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We generalize a search, matching, and bargaining model to allow individuals to acquire productivity-enhancing
schooling prior to labor market entry. In general, search frictions and weakness in bargaining position contribute to
underinvestment in schooling from an efficiency perspective. Using estimates of a general equilibrium version of the
model in which firm vacancy creation decisions are included, we find that minimum wages and schooling subsidies
improve aggregate welfare, but have very different welfare impacts across the ability distribution. In particular, policies
that maximize the average welfare of workers have strongly negative effects on the welfare of the least able.

1. INTRODUCTION

A large number of papers, both theoretical and applied, have examined labor market phe-
nomena using the search and matching framework, with some embedded in a simple general
equilibrium setting.2 Virtually all of the empirical work performed using this framework has
assumed that individual heterogeneity is exogenously determined at the time of entry into the
labor market. Perhaps the most important observable correlate of success in the labor market
is schooling attainment. In this article, we extend the standard search and matching framework
to allow for endogenous schooling decisions.3 This is an important generalization of the model,
since the large changes in the labor market over the past several decades can be expected to
have had major impacts on schooling decisions.4 The college enrollment rate of high school
graduates was 30% in 1973, whereas it was 48% in 2009. Coincidental with this change was an
increase in the college premium and inequality in the earnings distribution. Although our model
is set in a stationary environment, we are able to look at the manner in which labor market
conditions influence and are influenced by schooling decisions.
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1 The C.V. Starr Center for Applied Economics at New York University has partially funded this research. James
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Carlo Alberto, CMU, Washington University, ASU, and participants in the SOLE Meetings in London, June 2010
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2 A large number of macroeconomic labor applications are cited in Pissarides (2000) and the recent survey by Shimer
et al. (2005). In terms of econometric implementations of the model, examples are Flinn and Heckman (1982), Eckstein
and Wolpin (1990), Postel-Vinay and Robin (2002), Dey and Flinn (2005), Cahuc et al. (2006), and Flinn (2006).

3 There are a number of ambitious empirical papers that estimate life cycle individual decision rule models of
schooling choice and labor market behavior, such as Keane and Wolpin (1997) and Sullivan (2010). This approach
has been extended to allow for the endogenous determination of rental rates for various types of human capital, e.g.,
Heckman et al. (1998), Lee (2005), and Lee and Wolpin (2006). These frameworks do not allow investigation of surplus
division issues and the holdup problem since they are based on a competitive labor market assumption. Eckstein and
Wolpin (1995) estimate a search and matching model for various demographic groups in order to evaluate the “return
to schooling” along a number of dimensions (e.g., contact rates, matching distributions, bargaining power) but do not
explicitly consider the schooling decision.

4 For example, a recent article by Gemici and Wiswall (2014) shows that a significant factor in the “college premium”
over the past several decades is the changing mix of majors over this period.
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Recently, there has been an upsurge of political interest in increasing the minimum wage
(and even of indexing it to the consumer price level). The impact of a minimum wage has been
investigated using a search framework in models of wage posting with firm heterogeneity (van
den Berg and Ridder, 1998) and models with bargaining or surplus division with heterogeneity in
match productivity (e.g., Flinn, 2006; Flinn and Mabli, 2009). Although the general equilibrium
framework of Flinn (2006) can be used to investigate the impact of minimum wages on labor
market participation rates, he assumes that individuals are ex ante identical and make no
human capital investment decisions prior to entering the labor market.5 Although there have
been a number of empirical papers on the impact of minimum wages on schooling, all of this
research has been conducted outside of an explicit model of labor market behavior (see, e.g.,
Cunningham, 1981; Ehrenberg and Marcus, 1982; Neumark and Wascher, 1995; and Neumark
and Nizalova, 2007). These studies have come to somewhat different conclusions regarding the
linkage between the minimum wage and enrollment decisions, in part due to differences in
data sets, time periods analyzed, and econometric methodology. In general, however, increases
in the minimum wage have been found to be related to decreases in the enrollment rate. As
Neumark and Wascher (2003) conclude, “the question of how and for whom minimum wages
affect human capital formation merits further scrutiny,” and this is one of the goals of our
analysis.

Over the last several decades, the cost of acquiring higher education has risen precipitously
when compared with inflation as measured by the generic CPI-U. For example, from 1978
through 2009, inflation-adjusted college tuition has tripled. The impact of these price increases
on labor market outcomes, such as unemployment and earnings inequality, can only be consid-
ered within a behavioral model such as the one developed and estimated below. We are able to
examine the impact of changes in the price of higher education, a parameter that is estimated
in our model, on labor market outcomes.

In order to examine the effects of minimum wages and college costs on labor market out-
comes, we build a simple model of schooling investment decisions, where higher levels of
schooling investments are (generally) associated with better labor market environments. Indi-
viduals are differentiated in terms of initial ability, a, and the heterogeneity in this characteristic,
along with the structure of the labor market, is what generates equilibrium schooling distribu-
tions. The individual’s productivity at a firm is determined by her initial ability, her schooling
level, and an idiosyncratic match productivity value drawn from a distribution G. As is stan-
dard, we utilize a surplus division rule to determine wages and the vacancy creation decisions
of firms.

The fact that individuals make schooling decisions, which increase their subsequent labor
market productivity prior to entering the labor market, leads to a classic holdup problem.
There is a long-standing literature examining the essence of the holdup problem and the role
contracts play to reduce, or altogether avoid, holdup (see Malcomson, 1997, and Acemoglu,
1996, 1997, for a number of citations to the relevant literature). At the core of the problem is
the notion that investments must be made before agents meet, and, as a result, greater market
frictions generally lead to more serious holdup problems. Acemoglu and Shimer (1999) examine
the potential for holdup problems in frictional markets and investigate the manner in which
markets can internalize the resulting externalities. Their focus is on identifying ways in which
holdup and inefficiencies can be mitigated in labor markets characterized by ex ante worker and
firm investments and search frictions and find that this can be achieved in wage-posting models
with directed search. In our view, the commitment requirements for these types of contracts are
a serious impediment to their implementation. This leads us to examine the holdup problem in
a quasi-random search and matching framework.

5 The Flinn (2006) framework assumes i.i.d. match draws and ex ante homogeneous searchers. The “marriage” setup
used by Postel-Vinay and Robin (2002) and Cahuc et al. (2006) assumes that the flow productivity of a match between
worker i and firm j is given by aibj , with distributions Fa and Fb of these types in the population. The distribution of
types is considered a primitive, not impacted by the structure of the labor market or labor market policies, such as the
minimum wage.
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The generalized Nash bargaining power parameter has a direct impact on the extent of the
holdup problem the worker faces vis-a-vis pre-market schooling investment decisions. Although
there are a number of estimates of the bargaining power parameter within models of Nash
bargaining and matching, the estimates tend to vary significantly with the assumptions made
regarding the presence of on-the-job (OTJ) search, the nature of the renegotiation process, and
the data set used in estimation. In their search, matching, and Nash bargaining frameworks,
Dey and Flinn (2005), Cahuc et al. (2006), and Flinn and Mabli (2009) found that allowing for
OTJ search substantially reduced the estimate of the worker’s bargaining power parameter in
comparison with the case in which OTJ search was not introduced (e.g., Flinn, 2006). To some
degree, this is a result of allowing for Bertrand competition, a particular bargaining protocol.
When competition between firms is introduced, substantial wage gains over an employment spell
can be generated simply from this phenomenon, even when the individual possesses little or
no bargaining power in terms of the bargaining power parameter. Indeed, the (approximately)
limiting case of this is that considered by Postel-Vinay and Robin (2002), in which workers
possessed no bargaining power whatsoever. Although the holdup problem would seem to be
particularly severe in this case, even to the extent that individuals would have no incentive to
invest in human capital, this is not the case when Bertrand competition between competing
potential employers occurs, which is when the individual can recoup some of the returns to her
pre-market investment. Incentives to invest in their model are directly related to the contact
rates with other potential employers in the course of an employment spell, most importantly,
as well as the other rates of event occurrence (i.e., the offer arrival rate in the unemployed
state and the rate of exogenous separation). Our estimates of the surplus division parameter
are consistent with those reported in the small number of studies that attempt to estimate this
class of models.

As our model structure makes clear, simply estimating separate behavioral models of the
labor market for different schooling classes is at a minimum inefficient, and, more seriously,
may lead to misinterpretations of labor market structure. For this reason, whenever possible,
potentially endogenous individual characteristics acquired before or after entry into the labor
market should be incorporated into the structure of the search, matching, and bargaining model.
In order to do so in a tractable manner requires stringent assumptions regarding the productivity
process, bargaining, etc., as is evident in what follows. Using our simple and reasonably tractable
model, we are able to make some preliminary judgments regarding the impact of holdup on
schooling investment. We find that policies that attempt to redistribute the surplus between
firms and workers, such as minimum wages and schooling subsidies (to individuals), tend to
promote more schooling investment and actually lead to welfare improvements for workers
and efficiency gains for the economy. This is due to the fact that these policies reduce vacancy
creation by firms, which actually leads to preferable equilibrium outcomes given our model
estimates.

This article is organized as follows. In Section 2, we develop a bargaining model in a partial
equilibrium framework, with education decisions made prior to entering the labor market.
Section 3 extends the basic model to allow schooling submarkets to be characterized by different
vectors of primitive parameters, such as contact and dissolution rates. In Section 4, we generalize
the model to include on-the-job search. Section 5 considers the impact of a minimum wage
within a partial equilibrium model of the labor market. Section 6 puts the model into a general
equilibrium setting using the Mortensen-Pissarides matching function adapted to the two labor
market case. In Section 7 we discuss the data used in the estimation, identification of model
parameters, and define the estimator. In Section 8 we discuss the parameter estimates, and
Section 9 contains the results of our policy experiments with minimum wages and schooling
subsidies. Section 10 concludes.
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2. HOMOGENEOUS SCHOOLING MARKETS

We assume that flow match productivity between a worker i and a firm j is given by

yij = νiθij ,

where νi is worker i’s productivity type and θij is the match productivity value between the
worker and the firm, which is assumed to be independently and identically distributed according
to the distribution function G.6 The extension of our article is to allow the ν distribution to be
endogenous, with its form determined by the (exogenous) distribution of initial productivity
endowments, F, a distribution of match-specific productivities, G, and all other parameters
characterizing the labor market environment, �. The mapping from F into the distribution
of ν is reasonably straightforward. Schooling decisions are binary, with an individual i with
initial ability ai either deciding to go to school (si = 1) or not (si = 0). Her ability level after
schooling is given by νi = hsai, where h0 = 1 and h1 > 1.When there is no danger of confusion,
we will simply define h ≡ h1; then h − 1 > 0 measures the growth in any individual’s ability by
completing additional schooling. We will show that the decision to complete higher education
has a critical value property, where an individual with ability level ai completes higher education
if and only if ai ≥ a∗(c,G,�),where c denotes the common cost of completing higher education.
The distribution of ν is then determined by F, G, and �. Changes in any of these arguments,
particularly in G or �, will lead to changes in the ability distribution of agents entering the
market.

The analysis, both theoretical and empirical, can be made much more tractable if we make
the following set of assumptions.

1. All parameters describing the labor market are independent of schooling status with the
exception of hs. (This can easily be weakened, which is done throughout the remainder
of the article.)

2. The flow value of unemployment to a type a individual with schooling level s is given by

b(a, s) = bahs.

This last assumption is similar to that made in Postel-Vinay and Robin (2002) and in Bartolucci
(2013).

To fix ideas, we begin by briefly describing the model with no on-the-job search, since in this
case we are able to derive simple and transparent results. In this case, the value of search to an
individual of type (a,hs) who is entering the labor market as an unemployed searcher can be
summarized solely in terms of the product ν ≡ ahs, and the value of unemployed search to such
an individual is given by VU(ν). In terms of the surplus division problem, the worker–firm pair
solves

max
w

(VE(w, ν) − VU(ν))αVF (w, θ)1−α,

where

VE(w, ν) = w+ ηVU(ν)
ρ+ η

6 The analyses of Postel-Vinay and Robin (2002) and Cahuc et al. (2006) assume that flow productivity is given by
yij = aibj , where a and b denote the worker’s and firm’s productivity type, respectively. Dey and Flinn (2005) and
Flinn (2006) assume that yij = θij . These authors adopt different specifications of flow productivity in large part due to
the nature of the data with which they work. In the case of the first two papers, matched worker–firm information is
available, enabling the authors to identify distributions of worker and firm types nonparametrically. The other papers
rely on supply side data only and do not attempt to estimate the distribution of firm types. We only use “supply side”
data but with the repeated measurements we have available argue that we can separately identify the distributions of
match and individual-specific productivities.
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VF (w, θ, ν) = θν− w

ρ+ η
.

We have assumed that the firm’s outside option under Nash bargaining is equal to 0, which
is consistent with the common free entry condition (FEC) that drives the value of an unfilled
vacancy to 0.7 The solution to the surplus division problem yields

w(θ, ν) = αθν+ (1 − α)ρVU(ν),

and since

ρVU(ν) ≡ y∗(ν) = νθ∗(ν),

we have

w = ν(αθ+ (1 − α)θ∗(ν)).(1)

In terms of the value of unemployed search given ν, we have

ρVU(ν) = bν+ λ

∫
θ∗(ν)

(VE(ν, θ) − VU(ν))dG(θ)

⇒ νθ∗(ν) = bν+ λαν

ρ+ η

∫
θ∗(ν)

(θ− θ∗(ν))dG(θ).(2)

Since this last equation is independent of ν, we have

θ∗(ν) = θ∗ for all ν,

which means that the reservation output value for an individual of ability a with schooling level
s is simply

y∗(a, s) = ahsθ
∗.(3)

This result makes the analysis of the schooling choice problem straightforward. When an
individual of type a has schooling level s and enters the labor market, the expected value of the
labor market career is given by VU(ahs). Then for a type a individual, the value of schooling
level s at the time of entry into the labor market is

VU(ahs) = ρ−1ahsθ
∗.

We consider schooling level 0 as the baseline, that is, it is a required level of schooling for all
individuals. To complete schooling level 1 instead, a total cost of c must be incurred, which we
assume to be the same for all individuals. Individuals base their decision to complete schooling
level 1 on the comparison between the values of entering the labor market with human capital
h0 or h1. Then an individual with ability level a will attend school if

ρ−1ah1θ
∗ − ρ−1ah0θ

∗ ≥ c

⇒ a ≥ ρc
(h − 1)θ∗

.

Then, given that c > 0 and θ∗ > 0, there exists a critical value a∗ defined as

a∗ = ρc
(h − 1)θ∗

,

7 This assumption is utilized below when we generalize the model to allow for endogenous vacancy creation by firms.
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with an individual of type a ≥ a∗ acquiring schooling and a person a < a∗ not acquiring further
schooling.8 In the empirical analysis conducted below, we assume that the support of the
distribution of a is R+, so that the proportion of individuals in the population who acquire
schooling is given by 1 − F (a∗) > 0.

2.1. Comparative Statics Results. Given the simplicity of the decision rule, comparative
statics results are easily derived. For the most part, they are intuitively reasonable, which is the
reason we go through this modeling specification.

In our two schooling class model, we can summarize the schooling distribution in terms of
the probability that a population member graduates from college, the likelihood of which is

P1 ≡ P(s = 1) = F̃ (a∗),

where F̃ denotes the survivor function associated with the random variable a. The results are:

1. ∂P1/∂c < 0.The proportion of the population attending college is decreasing in the direct
costs of college attendance.

2. ∂P1/∂h > 0. This is perhaps the most intuitive result. The greater the impact on labor
market productivity, the greater the measure of individuals who complete college.

3. ∂P1/∂θ
∗ > 0.Now θ∗ is not a primitive parameter of course, but most primitive parameters

characterizing the labor market only affect the schooling decision through θ∗, which is
a determinant of the value of search for all agents (recall that the critical output level
for job acceptance is ahsθ

∗). Through this value, we can determine the impact of most of
various labor market parameters on the schooling decision.

(a) ∂P1/∂λ > 0.An increase in the arrival rate of offers increases θ∗ and hence increases
the value of having a higher productivity distribution.

(b) ∂P1/∂η < 0.An increase in the (exogenous) separation rate decreases θ∗ and hence
decreases the value of becoming more productive when matched with an employer.

(c) ∂P1/∂b> 0. An increase in the “baseline” flow value of occupying the unemploy-
ment state increases the value of that state and the value of going to college.

4. ∂P1/∂α > 0. An increase in the worker’s share increases investment.

The last result is one of the main focuses of our attention, and it is intuitive. It is well known
that the efficient level of productivity is obtained by giving the investing agents all of the surplus
from their investment, which is the case as α → 1. With endogenous vacancy creation, a value
of α = 1 would effectively shut down the labor market and could never be an optimal choice
with respect to worker welfare or efficiency. We return to this issue below.

8 In an earlier version of the model, we explicitly accounted for the difference in labor market entry dates under
the two schooling options. In such a case, with instantaneous cost c̃, the total discounted value of continuing in higher
education is exp(−ρτ)ρ−1ah1θ

∗, where τ is the length of time required to complete advanced schooling. The total cost
absorbed over the schooling period is

c = ρ−1c̃(1 − exp(−ρτ)).

Then the individual acquires schooling level 1 if

exp(−ρτ)ρ−1ah1θ
∗ − ρ−1ah0θ

∗ ≥ c,

and the condition for schooling to be acquired by any a when c > 0 is that exp(−ρτ)h1 − 1 > 0. Given that ρ and τ are
fixed in our analysis, this puts a strong restriction on the estimate of h1 for there to be a critical value rule of the type
we describe when explicitly considering discounting phenomena. We note that Cherlot and Decreuse (2005, 2010) also
ignore discounting when comparing the values of the two schooling choices in their theoretical analysis of schooling
investment with search frictions.
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2.2. Empirical Implications. This simple model produces some counterfactual empirical
implications. First, in the case of unemployment experiences, we see that the likelihood of
finding a type ν individual unemployed is

P(U|ν) = η

η+ λG̃(θ∗)
= P(U).

Thus, the assumption that the primitive parameters are identical across schooling groups pro-
duces the implication that there is no difference in unemployment experiences across schooling
groups. In the data, we know that individuals with less schooling are more likely to be found in
the unemployment state.

In terms of the wage distributions by schooling level, we do find systematic differences, of
course. We assume that the support of the matching distribution G is the nonnegative real line,
and that G is everywhere differentiable on its support with corresponding density g. We have
established that the schooling continuation set is defined by [a∗,∞). Now, from (1) we know
that

θ =
w
ν

− (1 − α)θ∗

α
,

where ν = ahs, and the lower limit of the wage distribution for an individual of type ν is
w(ν) = νθ∗. Then the cumulative distribution function of wages for a type ν individual is

F (w|ν) = G(α−1(w
ν

− (1 − α)θ∗)) − G(θ∗)

G̃(θ∗)
, w ≥ νθ∗,

and the corresponding conditional wage density is given by

f (w|ν) = 1
αν

g(α−1(w
ν

− (1 − α)θ∗))

G̃(θ∗)
, w ≥ νθ∗.

Now we consider the wage densities by schooling class. For this purpose, we write

f (w|a, s) = 1
αahs

g(α−1( w
ahs

− (1 − α)θ∗))

G̃(θ∗)
, w ≥ ahsθ

∗.

Then the marginal density of wages in schooling class s is given by

f (w|s) = 1

αhsG̃(θ∗)

∫
a−1g

(
α−1

(
w

ahs
− (1 − α)θ∗

))
dF (a|s), w ≥ hsa(s)θ∗,

where a(s) denotes the lowest ability individual who makes schooling choice s. Given the
simple form of the schooling continuation decision, the density of wages among those in the
low-schooling group is

f (w|s = 0) = 1

αG̃(θ∗)

∫ a∗

a
a−1g

(
α−1

(w
a

− (1 − α)θ∗
)) dF (a)

F (a∗)
, w ≥ aθ∗,(4)

where a is the lowest value of a in the population, while the density of wages in the high-schooling
population is

f (w|s = 1) = 1

αhG̃(θ∗)

∫ ā

a∗
a−1g

(
α−1

( w
ah

− (1 − α)θ∗
)) dF (a)

F̃ (a∗)
, w ≥ a∗hθ∗,(5)

where ā is the greatest value of a in the population.
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The conditional wage densities for the two schooling groups differ, then, not only because
college education improves the productivity of any individual who acquires it, but also through
the systematic selection induced on the unobserved ability distribution F by the option of going
to college. In terms of the conditional (on s) wage distributions, we note that the upper limit of
the support of both distributions is ∞. The distributions do differ in their lower supports, with
this lower bound equal to aθ∗ for those with high school education and a∗hθ∗ for those with
college. Since a∗h > a, the lower support of the distribution of the college wage distribution lies
strictly to the right of the high school wage distribution. It is straightforward to establish that
F (w|s = 0) ≥ F (w|s = 1) for all w ≥ aθ∗, so that the wage distribution of the college educated
first-order stochastically dominates those who are not college educated. This implication is
generally consistent with cross sectional wage distributions drawn from the Current Population
Survey, for example.

3. SEPARATE SCHOOLING SUBMARKETS

We continue within the partial equilibrium setting of the previous section, but consider
relaxing some of the more restrictive (from an empirical perspective) features of that model.
In particular, we know from the large number of structural estimation exercises involving
search models that the primitive parameters across submarkets are often found to be markedly
different (e.g., Flinn, 2002). In particular, it is often noted that the unemployment rate differs
across schooling groups, with those with lower completed schooling often having lengthier and
more frequent unemployment spells. As we saw above, such a result is not consistent with the
assumption that all primitive labor market parameters are the same across schooling classes.

The situation we consider is one in which each schooling class inhabits a separate labor market,
which has its own market-specific parameters (λs, ηs, αs).The parameter ρ, being a characteristic
of individual agents (individuals and firms), is assumed to be homogeneous across labor markets,
as is the baseline unemployment utility flow parameter, b. The match productivity distribution
G is also identical across markets. In terms of the productivity of an individual, nothing has
changed from the previous case, since y(a, s, θ) = ahsθ = νθ, so that the distribution of y is a
function of the distribution of the scalar ν and the common (to all matches) distribution G.
However, it is no longer the case that the critical match value will be the same across schooling
submarkets. Because primitive parameters differ across markets, ν is no longer a sufficient
statistic for the value of search of an individual; instead, a minimal sufficient statistic is the pair
(ν, s). This is clear if we reconsider the functional equation determining the value of search in
the homogeneous submarkets case, which was given in (2), adapted to the heterogeneous case.
We now have

νθ∗s (ν) = bν+ λsαsν

ρ+ ηs

∫
θ∗s (ν)

(θ− θ∗s (ν))dG(θ).

The solution θ∗s (ν) now clearly is independent of ν, as before, but is not independent of s. Thus,
there is a common critical value θ∗s shared by all individuals with schooling choice s, which is
independent of their ability a (conditional on s).

The critical match value for an individual of type a in schooling market s is given by ahsθ
∗
s =

νθ∗s , so that the value of unemployed search in this submarket is given by ρ−1νθ∗s . The net value
of college education to an individual of type a is

ρ−1ahθ∗1 − c − ρ−1aθ∗0,

so that the critical ability level a∗ is given by

a∗ = cρ
hθ∗1 − θ∗0.

For a∗ to be positive, it is necessary that hθ∗1 − θ∗0 > 0.
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3.1. Comparative Statics Results. Comparative statics results are fundamentally different in
this case in the sense that certain market-specific primitive parameters only impact the value of
unemployed search within their particular submarket. By simple extension of the homogeneous
results above, the results regarding ∂P1/∂c < 0 remain the same since the cost structure of
acquiring schooling is identical in the two cases. It is also clearly the case that ∂P1/∂h > 0. The
main departure from the previous case regards the presence of θ∗0 and θ∗1. We note that

1. ∂P1/∂θ
∗
0 < 0. As before, θ∗0 is not a primitive parameter, but the primitive parameters

specific to submarket 0 only affect the schooling decision through θ∗0. Then

(a) ∂P1/∂λ0 < 0. Increases in the arrival rate of offers in the low-schooling market
increase θ∗0, and increase the relative value of the low-schooling option.

(b) ∂P1/∂η0 > 0. Such an increase decreases the value of a low-schooling option.

2. ∂P1/∂θ
∗
1 > 0.

(a) ∂P1/∂λ1 > 0.
(b) ∂P1/∂η1 < 0.

3. Perhaps most interesting is the impact of market-specific bargaining powers αs on the
schooling decision. When there is one bargaining power parameter that holds throughout
all educational labor markets, the meaning of holdup is relatively unambiguous. When
there are market-specific bargaining power parameters, a relative notion of holdup is
more appropriate. Clearly we have

∂P1

∂α0
< 0.

∂P1

∂α1
> 0.

It is important to note that α1 could be quite low, and yet a substantial proportion of
agents may choose the high schooling level if α0 is significantly lower yet.

3.2. Empirical Implications. There are a few obvious differences in the empirical implica-
tions of the homogeneous and heterogeneous labor market models. The unemployment rate is
now

P(U|ν, s) = ηs

ηs + λsG̃(θ∗s )
= P(U|s), s = 0, 1.

As before, within a schooling group unemployment probabilities are homogeneous. Without
further restrictions on the event rate parameters and the bargaining power parameters, it is not
possible to order the unemployment probabilities across schooling levels.

In terms of schooling-specific wage distributions, the lower bound on the support of the wage
distribution associated with schooling type s is now given by w(0) = aθ∗0 for the low-schooling
group and by w(1) = a∗hθ∗1 for the high-schooling group. The conditional density of wages for
the low- schooling group is given by

f (w|a, s = 0) = 1
α0a

g(α−1
0 (wa − (1 − α0)θ∗0))

G̃(θ∗0)
, w ≥ aθ∗0,

while the wage density for the high-schooling group is

f (w|a, s = 1) = 1
α1ha

g(α−1
1 ( wah − (1 − α1)θ∗1))

G̃(θ∗1)
, w ≥ a∗hθ∗1.
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Since the model with heterogeneous schooling submarkets continues to imply that those who
continue to schooling level s = 1 form a connected set [a∗,∞), the unconditional (on a) wage
densities have the simple forms

f (w|s = 0) = 1

α0G̃(θ∗0)

∫ a∗

a
a−1g

(
α−1

0

(w
a

− (1 − α0)θ∗0
)) dF (a)

F (a∗)
, w ≥ aθ∗0,

and

f (w|s = 1) = 1

α1hG̃(θ∗1)

∫
a∗

a−1g
(
α−1

1

( w
ah

− (1 − α1)θ∗1
)) dF (a)

F̃ (a∗)
, w ≥ a∗hθ∗1.

With the lack of restrictions on the orderings of the primitive parameters across the two markets,
it is not possible to obtain the implication that F (w|s = 1) first order stochastically dominates
F (w|s = 0), which was true in the homogenous markets case.

4. ON-THE-JOB SEARCH

We have gone through the previous two specifications of the model without OTJ search in an
attempt to build some intuition regarding the relationship between schooling outcomes and the
primitive parameters characterizing the search environment. However, we know that there are a
large number of job-to-job transitions that are not consistent with the assumption that no offers
are received while currently employed. This generalization is also critical for any analysis of
the holdup problem, since as Postel-Vinay and Robin (2002), Dey and Flinn (2005), and Cahuc
et al. (2006) have shown, under certain assumptions regarding bargaining or surplus division
protocols, bidding between employers competing for the services of a worker potentially allows
the individual to obtain a large share of the surplus even when her notional bargaining power
(α) is low. Even when firms do not respond to outside offers, having the option to receive offers
when employed increases the value of unemployed search for each schooling group except
when workers are already receiving all of the surplus of the match. For simplicity, and due to
identification problems when taking the model to the data, we will henceforth assume that both
schooling markets share a common notional surplus division parameter, α = α0 = α1.

We now consider two specifications of the bargaining problem, one in which there is competi-
tion between two employers for the services of a single individual (which occurs at a measure-0
of times during the individual’s labor market career). This is what we refer to as the renegoti-
ation case. We then describe the situation in which firms do not respond to offers from other
firms, either because it is a strategic decision not to do so or because there is no credible way
to convey such offers. This is referred to as the no-renegotiation case. Although the payoffs to
workers and firms will differ in the two cases, both imply efficient mobility decisions, that is, the
firm at which the individual is more productive will always obtain the services of the individual.

In discussing both bargaining environments, we allow the primitive parameters to vary across
schooling markets. The contact rate for an unemployed searcher with schooling s will be denoted
λU,s, the contact rate for an employed searcher is given by λE,s, and the exogenous destruction
rate remains ηs.

4.1. Renegotiation. In the renegotiation case, firms periodically compete over a given
worker’s services. Of course, the individual’s ability ν is the same at both firms, but the match
productivity will differ with probability 1 if θ has an absolutely continuous distribution. Due to
the free entry condition discussed below, all firms have an outside option value of zero. When
two firms compete for the same worker, their positions are symmetric conditional on the match
productivity draws, that is, the current employer has no advantage or disadvantage in obtaining
the services of its current employee with respect to the other firm. Let θ′ and θ denote the two
productivity draws at the firms, and let θ′ > θ, in which case we call θ′ the dominant value and θ
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the dominated match value. The firms engage in Bertrand competition in terms of wage setting
until the firm with the dominated match value θ drops out after offering a wage that leaves it
with no surplus, which is w = νθ. The winning firm (at which productivity is νθ′) and worker
divide the surplus using the value of working at the firm with match value θ at the wage νθ as
the worker’s outside option and zero as the firm’s outside option and with labor receiving the
proportion α of the surplus.

We denote the value of employment to a worker with match values θ′ and θ with ability level
a in schooling market s as VE,s(θ′, θ, ν). For the case in which the individual is coming from
the state of unemployment, the “dominated” match value is simply given by the reservation
match value for this individual, which for now we write as θ∗s (ν). First, consider the value of an
individual’s problem given the state variables (θ′, θ, ν, s) and the wage offer w, which we can
write as

VE,s(θ′, θ, ν;w) = w+ ηsVU ,s (ν) + λE,s{
∫ θ′
θ

VE,s(θ′, θ̃, ν)dG(θ̃) + ∫
θ′ VE,s(θ̃, θ′, ν)dG(θ̃)}

ρ+ ηs + λE,sG̃(θ)
,

where the first integral in the numerator is the gain in welfare attributable to an increase in the
outside option, and the second term reflects welfare gains when a better match is discovered,
in which case the current θ′ becomes the “dominated” match value. In this case, there will be
(efficient) turnover. The firm’s value (for the ultimate employer of the worker, which is the firm
at which the match value is θ′) is

VF,s(θ′, θ, ν;w) = νθ′ − w+ λE,s
∫ θ′
θ

VF,s(θ′, θ̃, ν)dG(θ̃)

ρ+ ηs + λE,sG̃(θ)
.

In the case of Bertrand competition, the wage offer at the firm with the dominated match value
will be νθ, so that the value of remaining at the losing firm after all of the surplus has been
extracted by the worker is

VE,s(θ, θ, ν) = νθ+ ηsVU,s(ν) + λE,s
∫
θ

VE,s(θ̃, θ, ν)dG(θ̃)

ρ+ ηs + λE,sG̃(θ)
.

Then we can write

VE,s(θ′, θ, ν) = max
w

(VE,s(θ′, θ, ν;w) − VE,s(θ, θ, ν))αVF,s(θ′, θ, ν)1−α,

and this leads us to the following expression for the wage:

ws(θ′, θ, ν) = ν(αθ′ − (1 − α)θ) + αλE,s

∫ θ′

θ

VF,s(θ′, θ̃, ν)dG(θ̃)

−(1 − α)λE,s

[∫ θ′

θ

VE,s(θ′, θ̃, ν)dG(θ̃)+
∫
θ′

VE,s(θ̃, θ′, ν)dG(θ̃)−
∫
θ

VE,s(θ̃, θ, ν)dG(θ̃)

]
.

Now, as in the case of no OTJ search, posit that VE,s(θ′, θ, ahs) = ahsV̄E,s(θ′, θ), VF,s(θ′, θ, ahs) =
ahsV̄F,s(θ′, θ), and VU,s(ahs) = ahsV̄U,s, in which case the wage equation is

ws(θ′, θ, ν) = ν(αθ′ − (1 − α)θ) + ναλE,s

∫ θ′

θ

V̄F,s(θ′, θ̃)dG(θ̃)

− ν(1 − α)λE,s

[∫ θ′

θ

V̄E,s(θ′, θ̃)dG(θ̃) +
∫
θ′

V̄E,s(θ̃, θ′)dG(θ̃) −
∫
θ

V̄E,s(θ̃, θ)dG(θ̃)

]

= νqs(θ′, θ),
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and we have

νV̄E,s(θ′, θ) =
νqs(θ′, θ) + ηsνV̄U + νλE,s

[∫ θ′
θ

V̄E,s(θ′, θ̃)dG(θ̃) + ∫
θ′ V̄E,s(θ̃, θ′)dG(θ̃)

]
ρ+ ηs + λE,sG̃(θ)

.

Then

V̄E,s(θ′, θ) =
qs(θ′, θ) + ηsV̄U,s + λE,s

[∫ θ′
θ

V̄E,s(θ′, θ̃)dG(θ̃) + ∫
θ′ V̄E,s(θ̃, θ′)dG(θ̃)

]
ρ+ ηs + λE,sG̃(θ̃)

,

V̄F,s(θ′, θ) = θ′ − qs(θ′, θ) + λE,s
∫ θ′
θ

V̄F,s(θ′, θ̃)dG̃(θ̃)

ρ+ ηs + λE,sG(θ)
,

and

V̄U,s =
b + λU,s

∫
θ∗s

V̄E,s(θ̃, θ∗s )dG(θ̃)

ρ+ λU,sG̃(θ∗s )
.

In assessing the relationship between holdup and investment, allowing for OTJ search is a
realistic and important generalization. When λE,s = 0, the share of the surplus received by the
agent is α. When λE,s > 0, and with Bertrand competition between employers, the average
share of the surplus received by the worker will exceed α, often substantially so.9

4.2. No Renegotiation. As we will see below, the Bertrand competition case implies param-
eter values that on the face of it seem unreasonable. As in Flinn and Mabli (2009), we also
estimate the model under the assumption that no firms renegotiate with their employees. In this
case, all wage bargaining on the job uses as an outside option the value of unemployed search
for an individual of type ν,which is an option that is always attainable by any employee whether
or not contracts can be enforced.

In this case, the value of employment at a match value of θ is only a function of θ and ν. Then

VE,s(θ, ν;w) = w+ ηsVU,s(ν) + λE,s
∫
θ

VE,s(θ̃, ν)dG(θ̃)

ρ+ ηs + λE,sG̃(θ)

and

VF,s(θ,ν;w) = νθ− w

ρ+ ηs + λE,sG̃(θ)
.(6)

Then

VE,s(θ, ν) = max
w

(VE,s(θ, ν;w) − VU,s(ν))αVF,s(θ, ν;w)1−α,

which leads to the wage equation

ws(θ, ν) = ανθ+ (1 − α)
(
ρVU,s(ν) − λE,s

∫
θ

[VE,s(θ̃, ν) − VU,s(ν)]dG(θ̃)
)
,(7)

9 In the limit, as λU → ∞ and λE → ∞, the labor model becomes competitive in that each worker will be located at
the best match value θ̄, the finite upper support of G, and will be paid νθ̄. They will receive all of the surplus from this
match as long as θ is continuously distributed on [θ, θ̄].
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where we have used the fact that there will be efficient mobility in the sense that a worker of type
νwith a match productivity value of νθwill join a new firm where productivity is νθ′ if and only if
θ′ > θ. Once again, posit that VE,s(θ, ν) = νV E,s(θ), VF,s(θ, ν) = νV F,s(θ), and VU,s(ν) = νV̄U,s,

so that θ∗s (ν) = νθ∗s . Then

ws(θ, ν) = ν

[
αθ+ (1 − α)

(
ρV̄U,s − λE,s

∫
θ

[V E,s(θ̃) − V̄U,s]dG(θ̃)
)]

= νqs(θ),

and the model is closed with

V̄U,s =
b + λU,s

∫
θ∗s

V E,s(θ)dG(θ)

ρ+ λU,sG̃(θ∗s )
.

For either bargaining protocol, the schooling decision has the same form as in the case
without OTJ search. In particular, we have that an individual will obtain higher education when
a ≥ a∗ = c/(hV̄U,1 − V̄U,0). For the same primitive parameters, the critical value a∗ will vary
between the renegotiation and no-renegotiation cases, since the values V̄U,1 and V̄U,0 will differ.

5. MINIMUM WAGES

We have developed the model with no constraints on the compensation decision of the worker
and firm, although at some skill (ν) and match productivity (θ) levels statutory minimum wage
constraints may bind. In this section we examine the manner in which a minimum wage, m, will
impact the labor market within our partial equilibrium setting. For the most part, we follow
Flinn and Mabli (2009) in the development of this model. Since we will use the estimates from
the no-renegotiation OTJ search case in the sequel, we limit our discussion to the consideration
of this bargaining environment.

As in Flinn (2006), the minimum wage is viewed solely as a constraint on the surplus division
problem. A minimum wage m generally will impact the valuation of all labor market states,
at least for a subset of the population. As before, the acceptance decision is characterized
by a reservation value, with all match draws θ ≥ θ∗s (ν,m) being, in principle, acceptable. The
minimum wage constraint can bind for an individual of type ν if and only if ν× θ∗s (ν; m) < m, or
θ∗s (ν; m) < m/ν. Ignoring the minimum wage constraint for the moment, we can write the wage
equation (7) as

w̃s(θ, ν; m) = ανθ+ (1 − α)
[
ρVU,s(ν; m) − λE,s

∫
θ

[VE,s(θ̃, ν; m) − VU,s(ν; m)]dG(θ̃)
]
.

Now the wage equation w̃s(θ, ν; m) is increasing in θ, and for any individual with θ∗s (ν; m) < m/ν
there exists a unique θ̂s(ν; m) defined by

m = w̃s(θ̂, ν; m).

For all values of θ ∈ [m/ν, θ̂s(ν; m)] individuals with θ∗(ν; m) < m/ν will be paid the minimum
wage. For notational convenience, for individuals not bound by the minimum wage constraint,
that is, those for whom θ∗s (ν; m) ≥ m/ν,we define θ̂s(ν; m) = θ∗s (ν; m).Then for a type ν individual
the wage at a match value θ in minimum wage regime m is

ws(θ, ν; m) =
{

m if θ∗s (ν; m) < m/ν and θ ∈ [m/ν, θ̂s(ν; m))

w̃s(θ, ν; m) if θ ≥ θ̂s(ν; m).
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In the Flinn and Mabli (2009) treatment of the OTJ search case, there is a degenerate ability
distribution F and no schooling decision, so that match productivity is simply given by θ.Because
individuals in their model are ex ante homogeneous, a binding minimum wage applies to all
members of the population. In the case considered here, if ν is unbounded, there will be a set
of individuals for whom the minimum wage will not be binding, although as the minimum wage
becomes indefinitely large eventually it will become binding for all individuals as defined by ν.
The minimum wage in this model has real distributional effects within the population of workers.

We will be particularly interested in the manner in which the minimum wage affects the
schooling decision of individuals. By increasing one’s ability through the completion of higher
education, the individual can partially escape the negative employment effects of the minimum
wage by increasing the distribution of flow productivities she faces. More formally, we can write
the value of unemployment for an individual of type a without schooling as

ρVU,0(a; m) = ba + λU,0

∫
max{θ∗0(a;m),m/a}

[VE,0(θ, a; m) − VU,0(a; m)]dG(θ),

whereas if she obtains higher education

ρVU,1(ah; m) = bah + λU,1

∫
max{θ∗1(ah;m),m/(ah)}

[VE,1(θ, ah; m) − VU,1(ah; m)]dG(θ).

We note that with the minimum wage “distortion,” it is no longer the case that the job acceptance
decision is a function only of θ given the schooling level. That is why we cannot write VU,s(ν; m)
as νV̄U,s(m). This makes the analysis of how the minimum wage affects schooling decisions
more complex. An individual of type a will complete college under minimum wage m iff

VU,1(ah; m) − VU,0(a; m) ≥ c.

For individuals with a large enough value of a, the minimum wage m will not be binding with or
without schooling, so the decision rule simplifies to the ones considered previously. For those
with low values of a, there will be values of the minimum wage that will be binding whether
they complete college or not. Finally, there is a set of individual types for whom a minimum
wage m will not be binding if they complete college, but will be if they do not. It is not possible
to characterize these sets analytically, but we will conduct policy exercises in which we will be
able to quantitatively assess the degree to which the imposition of a minimum wage impacts the
schooling decisions of population members differentiated by their ability endowments.

6. ENDOGENOUS CONTACT RATES

In this section, we consider how the contact rates (λU,s, λE,s), s = 0, 1, are determined endoge-
nously in a general equilibrium framework. We assume random search within each schooling
market, but vacancies are created for certain schooling types and are available only to the
particular schooling group for which they are posted. We adapt the standard Mortensen and
Pissarides (1994) framework to this two market environment and allow firms to post vacancies
vs in schooling market s at a constant marginal cost ψs. Firms and workers are then matched
with each other according to a constant returns to scale matching technology. Let Us be the
mass of unemployed workers of schooling type s and Es = 1 − Us be the mass of employed
workers in this schooling group. The flow of matches created, Ms, is given by

Ms = (Us + φsEs)δsv1−δs
s ,

where δs is the Cobb–Douglas parameter in market s, δs ∈ (0, 1). The parameter φs, 0 < φs ≤ 1,
reflects the lower search efficiency of individuals who are currently employed relative to the
unemployed. The rate of contacts per firm searching in market s is

qs(k) = kδs
s ,
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where ks = (Us + φsEs)/vs, and ks is a measure of market tightness. The proportion of searchers
of schooling level s who are employed is given by (φsEs)/(Us + φsEs), so that the mass of matches
in market s that involve an employed worker is simply (φsEs)/(Us + φsEs) × Ms, which means
that the flow rate of contacts for the employed is

λE,s = (φsEs)
(Us + φsEs)

(Us + φsEs)δsv1−δs
s

Es

= φskδs−1
s .

A similar argument is used to find the contact rate for unemployed searchers in group s,

λU,s = kδs−1
s .

A fact that will be utilized in the estimation of demand side parameters below is that φs =
λE,s/λU,s.

The final components of the general equilibrium framework are the flow costs associated
with vacancy creation, which are given by ψs, s = 0, 1. Firms can create vacancies in either
market, and entry continues until the expected value of creating a vacancy is driven to zero in
both markets. We will consider the form of this expression for the no-renegotiation case both
because it is simpler and because we find empirical support for this specification. The value of
the firm of being matched with an individual of type ahs with a match draw of θ is VF,s(θ, ahs),
which is given in (6). In the high-schooling market, we know that the minimum value of ν is
equal to a∗h, whereas in the low-schooling market the maximum value of ν is a∗. Let the steady
state distribution of match values among the employed in market s be given by HE,s(θ), which
has support [θ∗s ,∞). Then the expected value of a vacancy in the high-schooling market is

− ψ1 + kδ1
1

U1 + φ1E1
×
(

U1

∫
a∗

∫
θ∗1

VF,1(θ, ah)dG(θ)dF (a)(8)

+φ1E1

∫
a∗

∫
θ∗1

∫
θ′

VF,1(θ, ah)dG(θ)dHE,1(θ′)dF (a)

)
,

and the expected value of a vacancy in the low-schooling market is

− ψ0 + kδ0
0

U0 + φ0E0
×
(

U0

∫ a∗ ∫
θ∗0

VF,0(θ, a)dG(θ)dF (a)(9)

+φ0E0

∫ a∗ ∫
θ∗0

∫
θ′

VF,0(θ, a)dG(θ)dHE,0(θ′)dF (a)

)
.

Under the free entry condition (FEC), both of these terms are equal to zero.
In the presence of a binding minimum wage, these expressions are altered in important ways.

The expected value of posting a vacancy in the high-schooling market becomes

−ψ1 + kδ1
1

U1 + φ1E1
×
(

U1

∫
a∗(m)

∫
max{θ∗1(ah;m),m/(ah)}

VF,1(θ, ah; m)dG(θ)dFU,1(a|m)

+ φ1E1

∫
a∗(m)

∫
max{θ∗1(ah;m),m/(ah)}

∫
θ′

VF,1(θ, ah; m)dG(θ)dHE,1(θ′|ah,m)dFE,1(a|m)

)
,
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where HE,1(θ′|ah,m) is the steady-state distribution of match values in the high-schooling mar-
ket for individuals of type ah under the minimum wage m, and Fl,s(a|m) is the steady-state
distribution of a in labor market state l and schooling group s under the minimum wage m. The
corresponding expression for the low-schooling market is

−ψ0 + kδ0
0

U0 + φ0E0
×
(

U0

∫ a∗(m) ∫
max{θ∗0(a;m),m/a}

VF,0(θ, a; m)dG(θ)dFU,0(a|m)

+ φ0E0

∫ a∗ ∫
max{θ∗0(a;m),m/a}

∫
θ′

VF,0(θ, a; m)dG(θ)dHE,0(θ′|a,m)dFE,0(a|m)

)
,

where HE,0(θ′|a,m) is the steady-state distribution of match values in the low-schooling market
for individuals of type a under the minimum wage m. Under the FEC, vacancies will be deter-
mined at the points at which both these expressions equal zero, which clearly is a function of
the minimum wage m.

By examining these expressions, we see that minimum wages affect the vacancies, and hence
equilibrium contact rates, in a variety of ways. Most obviously, as in partial equilibrium, they
restrict the set of match values that will result in an employment contract. Secondly, they alter
the surplus division between the worker and firm, thus impacting VF,s(θ, ahs; m). Thirdly, they
affect the composition of the low- and high-schooling populations through their impact on
a∗(m). We will see all of these forces at work in the quantitative exercises conducted below.

7. ECONOMETRIC ISSUES

We begin this section by discussing the data utilized to estimate the model specifications.
We then provide a discussion of the estimation method and identification of model parameters
given the data available. Model estimates and comparative statics exercises are presented in the
following sections.

7.1. Data Description. Our primary data source is the Survey of Income and Program Par-
ticipation (SIPP). The SIPP is a nationally representative, household-based survey consisting
of several longitudinal panels. Each panel lasts four years in total. The survey is administered
in four-month “waves,” at which point information is collected retrospectively for the previous
four months. Therefore, each panel contains 12 waves of the survey. Our analysis is based on
information collected over a 12-month period from Waves 4, 5, and 6 of the 2004 panel. Since
the first longitudinal month is not the same for all sample members, we observe individuals
for the first time between October 2004 and January 2005 and we observe their final month
between September 2005 and December 2005.

The sample characteristics we use in defining the estimator involve labor market states at the
beginning (first month) and end (last month) of this 12-month period. In what follows, we index
the beginning of the period as t = 0 and the end as t = 1. In addition to this comparison, we link
individuals across the intermediate wave (Wave 5) in order to track their employment history.
We use this to infer whether any given individual has experienced a spell of unemployment or
a change in employer between t = 0 and t = 1.

Below we describe how information in the SIPP is coded, the restrictions we impose on the
final sample, and further details on the construction of our sample characteristics from this
data set. We exploit exclusively the available sample information on labor force status, labor
earnings and hours, demographics, and educational attainment. Since the model requires us to
distinguish individuals based on categories of “high” and “low” schooling, we must take a stand
on this definition. In what follows, we assign all those with educational attainment equal to or
exceeding a four-year bachelor’s degree to the high education group. We began by assigning all
of those with any college to the high-schooling group, but found that those with less than four
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years of college were far more similar in their labor market outcomes to those who had not
attended college at all than they were to those who had completed four years of college.

Although our model allows for a variety of forms of individual heterogeneity, we thought
that we should apply it to a relatively homogeneous subpopulation. For this reason, we look
exclusively at males from 25 to 34 years of age, inclusive. The vast majority of these individuals
would have completed their formal schooling. In addition, since stationary models are weak
when it comes to capturing life-cycle events, we used a fairly narrow age range. We also exclude
all members of the sample who appear “out of the labor force” in the first month of the sample,
the formal definition of which is given below. Finally, to be included in the sample, an individual
must appear in and have valid labor force information for each of the waves of the survey
that we utilize. Our final sample consists of 4,000 individuals. Of these, 1,072 report having a
four-year bachelor’s degree or higher. This produces a schooling completion rate of 26.8%.

A critical source of identifying information for our model comes from the wage and employ-
ment histories of individuals in the sample. In the SIPP, weekly labor force status information
is collected retrospectively for the four months since the last wave. Categories of weekly labor
force status are as follows: (i) with a job/business and working; (ii) with a job/business and not
on layoff, but absent without pay; (iii) with a job/business, but on layoff and absent without
pay; (iv) no job/business and looking for work or on layoff; and (v) no job/business, not looking
and not on layoff. In our application, we define an individual to be employed in any given week
if he reports any of the first three categories. Similarly, we record an unemployment spell if
an individual responds within category (iv) or (v) for any given week. Finally, we designate an
individual as being “out of the labor force” if he reports category (v) for every week in the first
month of the sample. That is, they are classified as out of the labor force if individuals report
having no job and having spent no time looking for employment.

In addition to information on employment status, the survey tracks the employer history of
each sample member. In each wave, an index number denotes the firm to which the retrospective
earnings and hours information applies. This information is augmented by a variable that
indicates whether the individual is still working for the employer for whom the information is
given. This information can be linked across waves to determine whether an individual is at
the same employer at two consecutive points in time. We let mt denote the worker’s employer
at time t; if m0 = m1, the worker is employed at the same firm at both points in time. Since
workers may hold more than one job or fail to report a job that they currently still hold, we
only assign a new index number if it can be confirmed that the individual is no longer working
for the employer observed in the first sample month when we observe him later in the survey.
If an individual is employed at both points in time, has m0 �= m1, and if he has not experienced
an unemployment spell during the intervening period, we can infer that a job-to-job transition
has occurred.

Table 1 provides some descriptive statistics for these variables. We see that in the high-
schooling group, the unemployment rate at the beginning of the sample is 2.1%. Of those em-
ployed at time 0, 8.1% experience an unemployment spell over the 12 month period, whereas
18.0% have made a job-to-job transition with no intervening unemployment spell.10 The un-
employment rate in the low-schooling group is 5.8%. Of those employed at time 0, 14.1%
experience an unemployment spell over the 12-month period, whereas 17.9% make a job-to-
job transition.

Wages and hours are recorded on a monthly basis in the survey. Although many sample
members report an hourly wage, this rate is not always directly available. For those who do
not report an hourly rate, we impute the wage by dividing reported labor earnings by reported
hours. To limit measurement error, we make this imputation only for those who report greater

10 This number is a lower bound for the total number of job-to-job transitions, since individuals may have undergone
such a transition and then experienced an unemployment spell, which removes them from this particular conditioning
set. Our use of a simulated moments estimator allows us to incorporate any type of sample path in our estimation
procedure.
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TABLE 1
DESCRIPTIVE STATISTICS

Combined Low schooling High schooling

Observations 4000 2928 1072
Employment transitions

Unemployed 0.048 0.058 0.021
Employed 0.952 0.942 0.979
Employed at beginning and at least one unemployment spell 0.125 0.141 0.081
New employer, no unemployment spell 0.180 0.179 0.180

Wages
E[w] 16.288 14.529 21.417
V[w] 59.382 42.322 73.866
Number of valid observations 3140 2338 802
Number of imputed observations 1268 666 602

than 30 hours of work per week. In order to reduce the impact of measurement error further, we
trim wages by discarding the highest and lowest 2.5% of wage observations. The wages utilized
in estimation are those that survive these selection criteria.

Table 1 presents some descriptive statistics for the wage distribution at the beginning of
the sample. The mean hourly wage is 16.29, with a significant difference between those in the
low-schooling category (14.53) and the high-schooling category (21.42). There is an appreciable
degree of dispersion in these distributions, with more dispersion in the college-educated group,
as is to be expected.

Among the valid wage observations, 666 individuals in the low-schooling group have an
imputed wage, whereas 602 observations in the high-schooling group are imputed. That a lower
portion of the high-schooling workers receive an hourly salary is unsurprising, given the typical
occupations and work arrangements of these two groups.

Due to the challenges of identifying worker bargaining power that are discussed below, we
utilize information on the labor share of the surplus. We will exploit this information in the
same way as it was used in Flinn (2006); he showed that this information was virtually essential
to enable identification of the surplus division parameter, α. The discussion in Krueger (1999)
led us to believe that 0.67 was a reasonable value to use for the labor share for this group of
labor market participants.11

The federal minimum wage was $5.15 during the sample period, although a number of state
minimum wages were higher, often substantially so. Since we are using data for individuals
in the age group 25–34, and given the wage distributions discussed above, we assume that
there is no binding minimum wage when estimating the model, which considerably simplifies
the estimation problem. Given the model estimates that we obtain under this assumption,
we perform policy experiments in which binding minimum wages are introduced into the labor
market. In performing the policy experiments at the point estimates of the primitive parameters,
we find that a minimum wage of 5.15 is not binding, so that the estimates are consistent with our
assumption that minimum wages are not binding at such low levels for the set of individuals in
our sample.

7.2. Identification. The specification of the model we estimate is the most general one that
we have considered, in which we allow each schooling class to inhabit its own market, which is
characterized by its own contact rates when individuals are in the unemployed and employment

11 In Flinn’s (2006) study of minimum wage effects on labor market outcomes, the labor share was computed from
the Consolidated Income Statement of McDonald’s corporation for 1996 and was found to be about 53%. This was
deemed reasonable since the data used in estimation were for workers between the ages of 16 to 24, inclusive. For
the older workers in our sample, who are all full-time labor market participants and most of whom have completed
schooling, the value of 0.67 seems to be appropriate.
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states and their own exogenous dissolution rates when employed. Additionally, the markets
share certain parameters, including the matching distribution, G, the discount rate, ρ, and
the coefficient of ahs associated with flow utility in the unemployment state, b. We have also
assumed, simply due to identification issues, that both markets share the same value of the
surplus division parameter, α. Of course, the ability endowment distribution, F , the human
capital augmentation parameter for those with a college education, h, and the lump sum cost
of schooling, c, are common to individuals making the schooling decision before entering the
labor market. Thus, the primitive parameters of the model are ρ,b, λU,s, λE,s, ηs,F,G,h, c, and
α, for the two schooling classes, s = 0, 1.

Much of the identification analysis can be conducted using results from Flinn and Heckman
(1982), hereafter referred to as FH, after noting which of the parameters (explicitly) deter-
mine labor market outcomes once we condition on the observed schooling level, s. The FH
analysis was likelihood based, and for reasons to be discussed below, we employ method of
(simulated) moments (MSM) estimators. However, the arguments that they make carry over to
the case of our estimator given that we select appropriate sample characteristics to match. The
advantage of our estimator is that it remains well defined for samples in which some individual
observations are zero-probability events under the model; in this case the maximum likelihood
estimator is undefined, and to handle such cases typically measurement error must be explic-
itly introduced into the model.12 Although there is some loss in asymptotic efficiency, as long
as the MSM estimator includes functions of the data that are similar to those comprising the
minimal sufficient statistics that characterize the likelihood function, identification and “good”
asymptotic properties carry over to the MSM estimator that we utilize. The reasonableness of
the parameter estimates and the small bootstrapped standard errors for most of the parameters
provide some prima facie evidence in support of this claim.

As in the m.l. estimator used by FH, we treat the decision rules a∗ and θ∗j as constants. There
is no loss in efficiency in doing so, since the simple search model considered in FH and the one
estimated here are both fundamentally underidentified. The model that they investigate is a
(very) special case of the one analyzed here. In particular, it is the special case of our model for
whichα = 1, a = 1,h = 1, andλE = 0 for all agents. With no schooling decision, the sole decision
rule of the model is θ∗. They show that a certain (broad) class of parametric distributional
assumptions are required to estimate the model. Given the parametric assumption, all model
parameters are identified except for the pair (b, ρ). Fixing one of these at some predetermined
value allows the other to be consistently estimated given the functional equation defining the
critical value. Typically, the value of ρ is fixed, and the value of b is then imputed by solving
the functional equation that determines θ∗ evaluated at consistent estimates of all of the other
parameters. In this manner, consistent estimates of λU, η, G, and b are obtained given an
assumed value of ρ.

The extension to the model we estimate allows α to be a free parameter along with a nonde-
generate distribution of a, given by F, introducing a human capital level h (which is presumably
greater than 1) and a cost of college completion, c. As we showed above, the critical schooling
value a∗ is a function of all of the primitive parameters of the model through θ∗1, θ∗2, h, and c
(and assuming a value ρ). Since c only appears in the schooling choice problem, an estimated
value of a∗, in conjunction with consistent estimates of F and h, is used to form a consistent
estimator of c.

As we showed above, conditional on s, variability in schooling decisions and wage outcomes
(across individuals and over time) is generated by the two independent random variables, a and
θ. Under our model assumptions (and assuming no binding minimum wage), the critical match
value θ∗s is independent of ability, conditional on the schooling level s, but does vary by schooling
level in the heterogeneous markets case. We begin by considering the simple case in which
λE,j = 0, j = 0, 1. If the model parameters are identified in this case, it is fairly straightforward

12 See, for example, Flinn (2002) and Dey and Flinn (2005) for discussions regarding the introduction of measurement
error into likelihood-based estimators to eliminate this problem.
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to establish that the case of OTJ search only strengthens identification arguments, even if the
OTJ search case introduces two new free parameters, λE,j , j = 0, 1. Recall from (7) that the
wages for individuals in the two schooling classes will be given by

w0 = a(αθ+ (1 − α)θ∗0), a < a∗, θ ≥ θ∗0

w1 = ah(αθ+ (1 − α)θ∗1), a ≥ a∗, θ ≥ θ∗1,

so that the distribution of log wages in each schooling group is a convolution of functions of the
distributions of a and θ,

lnw0 = ln a + ln(αθ+ (1 − α)θ∗0), a < a∗, θ ≥ θ∗0

lnw1 = ln a + ln h + ln(αθ+ (1 − α)θ∗1), a ≥ a∗, θ ≥ θ∗1.

The distribution of the log wage in each group is a convolution of a truncated normal random
variable, ln a, and a nonlinear function of a truncated lognormal random variable, θ. Then we
can write

lnw0 ∼ R0(lnw0;μa, σa, μθ, σθ, α, a∗, θ∗0)

lnw1 ∼ R1(lnw1;μa, σa, μθ, σθ,h, α, a∗, θ∗1).

It is straightforward to verify that, with access to only a cross section of the SIPP data, wage
and school completion information is sufficient to identify all of the parameters characterizing
the distributions R0 and R1 under these distributional assumptions using a maximum likelihood
estimator. However, there exist additional support conditions that must be satisfied for the
m.l. estimator to be defined. In particular, under our lognormality assumptions on a and θ, the
only one that is potentially binding is that w1 ≥ a∗θ∗1. Following FH, we can use this constraint
as a way to eliminate the estimation of the parameter θ∗1 by substituting into the likelihood
θ̂∗1 = min{wi}i:si=1/a∗, since min{wi}i:si=1 is a superconsistent estimator of a∗θ∗1.

Although the log-likelihood function of wages can be used to show that all of the parameters
in the distribution functions R0 and R1 are identified in theory, including the bargaining surplus
parameter α, Monte Carlo sampling experiments conducted and discussed in Flinn (2006)
indicate that an extremely large number of observations are required to obtain well-behaved
sampling distributions of the m.l. estimator, and his case is a special case of the one examined
here. It is for this reason that we follow Flinn (2006) in utilizing information from outside the
sample on firms’ share of the surplus to aid in the identification of α, in particular.

We now consider the addition of OTJ search. This makes the cross-sectional distribution of
wages in the two schooling groups considerably more complex to describe, in addition to adding
the two parameters to be estimated. However, with access to limited amounts of event-history
data, the wage changes associated with job-to-job transitions aid considerably in identification.
Let w′ be the new wage and w the former wage in a job-to-job transition. In our OTJ search
model without wage renegotiation, it must be the case that w′ > w ≥ θ∗j ν. Then the distribution
of

lnw′ − lnw = ln
(
αθ′ + (1 − α)

(
ρV̄U,s −

∫
θ′

[V̄E,s(θ̃) − V̄U,s]dG(θ̃)
))

− ln
(
αθ+ (1 − α)

(
ρV̄U,s −

∫
θ

[V̄E,s(θ̃) − V̄U,s]dG(θ̃)
))

,

in schooling market s is a not a function of μa and σa. Using these types of wage change
data in conjunction with cross-sectional wage information greatly aids in solving the difficult
deconvolution problem we face.

Although the decision rule a∗ is theoretically identified from the distributions of the wage data
for the two schooling classes, there is additional sample information that greatly increases the
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precision of the estimate. Since P(s = 1) = F̃ (a∗), a∗ = F̃ −1(P(s = 1)). Given a consistent esti-
mator of P(s = 1), which is simply P̂(s = 1) = ∑N

i=1 si/N, we have â∗ = F̃ −1(P̂(s = 1);μa, σa),
and this quantity is substituted into the log-likelihood function. In the case of no OTJ search,
to estimate the cost of schooling we note that

c = a∗

ρ
(θ∗1h − θ∗0),

so that with an assumed value of ρ and consistent estimators for all of the other parameters and
decision rules on the right-hand side, a consistent estimator of c is obtained. In the case of OTJ
search, this expression must be altered slightly and becomes

c = a∗(hV̄U,1 − V̄U,0).

It remains to consider the rate parameters, the estimation of which is straightforward. Under
our model structure, if uncensored durations of unemployment and completed employment
spells13 are available, then all of these spells follow (conditional) exponential distributions, the
constant hazard rates of which are given by hU,j = λU,j G̃(θ∗j ) and hE,j = ηj . Thus, consistent
estimators of these hazard rates, along with consistent estimators of G and θ∗j , are used to recover
λU,j and ηj , j = 0, 1. Given an observed wage w, we know that w = ahs(αθ+ (1 − α)(ρV̄U,s −∫
θ
[V̄E,s(θ̃) − V̄U,s]dG(θ̃))), and it is straightforward to show that w(θ) is strictly increasing so

that there exists an inverse function θ = τ(w) that is monotone increasing as well. The rate of
job-to-job transitions conditional on the current wage w is given by λE,j G̃(τ(w)). With access
to the durations of job spells that ended in a job-to-job transition, the maximum likelihood
estimator of λE,j is given by

λ̂E,j = NJ,j∑
i: si=j G̃(τ̂(w); μ̂θ, σ̂θ)ti

,

where NJ,j is the number of individuals with job-to-job transitions in schooling group j, ti is
the length of the job spell that ends in a job-to-job transition, and the “ˆ” denotes a consistent
estimator of the parameter or decision rule. Allowing for right-censoring in the duration data
is accomplished in the obvious manner.

Our credible estimator of α comes from imposing the restriction that the labor share from the
model match the labor share in the aggregate economy, which we argued above could be taken
to be two-thirds. The constraint was imposed in a manner similar to Flinn (2006), except for
the difference in the form of the estimator used. When estimating the heterogeneous markets
model, the aggregate labor share measure was defined as the ratio of the weighted average
of wages in the high- and low-schooling markets divided by the weighted average of output
in the two sectors, where the weights are just the proportions of individuals in the low- and
high-schooling markets. We use this procedure because we do not have access to labor share
by schooling class.

7.3. Estimator. Although our identification discussion was likelihood based, for a variety of
reasons we utilize a method of simulated moments estimator to estimate the model. Under the
data-generating process (DGP) of the model, there are a number of sharp restrictions on the
support of the wage distributions by schooling class that are generally not consistent with the
empirical distributions observed. In such a case, measurement error in wage observations is
often added to the model. This is not really a feasible alternative here given that we are already

13 A complete employment spell is a sequence of job spells between two unemployment spells, and the duration of
such a spell is the sum of the durations of the jobs that comprise it.
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trying to estimate a convolution, so that the addition of another random variable to the wage
process can only exacerbate the difficulty of separately identifying the F and G distributions.

We chose to use a moment-based estimator that employs a large amount of information
characterizing the wage distributions by schooling class, but that does not impose such a large
penalty on the estimator for violating some of the implications of the DGP of the model.
Of course, there is some loss of efficiency (assuming that the model is correctly specified) in
general, although we find that we are able to precisely estimate the majority of the parameters
characterizing the model.

The information from the sample that is used to define the estimator is given by MN, where
there are N sample observations. Under the DGP of the model, the analogous characteristics
are given by M̃(ω), where ω is the vector of all identified parameters (which are all parameters
and decision rules except ρ). Then the estimator is given by

ω̂N,WN = arg min
ω∈�

(MN − M̃(ω))′WN(MN − M̃(ω)),

where WN is a symmetric, positive-definite weighting matrix and � is the parameter space. The
weighting matrix, WN, is a diagonal matrix with elements equal to the inverse of the variance of
the corresponding element of MN. The exception to this rule is the weight attached to the labor
share, which is treated as known (i.e., it is given an extremely large weight).

Under our random sampling assumption, we have that plimN→∞MN = M, the population
value of the sample characteristics used in estimation. Since WN is a positive-definite matrix
by construction, our moment-based estimator is consistent since plimN→∞ω̂N,Q = ω for any
positive-definite matrix Q. We compute bootstrap standard errors using 100 replications.

The sample characteristics we use to estimate both versions of the heterogeneous markets
model, with and without renegotiation, are the same and are listed in Table 3, below. All
together there are 16 sample characteristics for each schooling group and the proportion of the
sample in the high-schooling group, for a total of 33 sample characteristics. The labor share
value is also included as a constraint on the estimator.

The first characteristics listed refer to labor market states at the two points in time. Some of
the sample characteristics are conditional and some are not. For example, the first characteristic
is the proportion of the sample employed at time 0, which is taken to correspond to the steady-
state employment rate. The second characteristic is the proportion of the sample who are
employed at time 1 given that they were employed at time 0. The fourth characteristic is the
unconditional probability that an individual is employed at the same employer at time 0 and
time 1 (that is, this must be 0 for people employed at different employers at time 0 and 1 as
well as for all other individuals who were not employed at one or both of these dates). The
characteristic NU is the number of unemployment spells in the one year period of time, and FU

is the proportion of the one-year period spent in unemployment. The last seven characteristics
relate to the first and second moments of wages both unconditionally (at time 0) and conditional
on events that occurred over the one-year observation period.

7.4. Estimation of Parameters in the GE Version of the Model. As stated above, any firm
can post a vacancy in either schooling market, and it is assumed that free entry drives the
expected value of a vacancy to zero in both schooling markets. One of the principal problems
with estimating the parameters that appear in the GE version of the model is the lack of credible
information on vacancies. Even with this information, we can easily see that the unrestricted
GE specification is not identified. We can rewrite (8) and (9) more succinctly as

0 = −ψs + kδs
s As,

where As is the expected value of a filled vacancy in schooling market s, and ks = (Us + φsEs)/vs,

with φs the effective search units associated with employed workers and vs denoting the measure
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of vacancies in sector s. From our first-stage estimates of the partial equilibrium model, we can
consistently estimate As, along with Us, Es(= 1 − Us), and φs. If vacancies are observed, then
we can consistently estimate ks, so that the FEC produces two equations in four unknowns,
ψ0, ψ1, δ0, δ1, and thus we cannot hope to obtain consistent estimates of these parameters
without further restrictions.

We consider the (more realistic) case in which vi is unobserved in each sector, so that it must
be estimated along with the other primitive parameters ψs and δs, s = 1, 2. Since the model
is not identified even when vs is known, it clearly is not when vs must be determined as well.
As noted in Flinn (2006), in such a case it is necessary to restrict the matching function either
to a class of functions with no unknown parameters or by assuming values of the parameters
required to characterize a parametric function. Under our Cobb–Douglas assumption with the
constant returns to scale restriction, by assuming that TFP is equal to 1, only one parameter
is required to characterize the matching function in each market. We use typical values of this
parameter from the macroeconomics literature as surveyed by Petrongolo and Pissarides (2001)
and perform our quantitative exercises using values of δs taken from the set {0.4, 0.5, 0.6}.

Given values of δs, we can obtain a consistent estimate of the vacancy rate from the matching
function and the consistent estimates of the contact rates λU,s and λE,s. Given the vacancy rate
we can consistently estimate ks, and hence with an assumed value of δs and consistent estimates
of As and ks, we define a consistent estimator of ψs. Consistent estimates of ψs are required to
perform the policy experiments reported below within a general equilibrium framework.

8. MODEL ESTIMATES

We estimated the full (i.e., heterogeneous labor markets) model for both the renegotiation
and the no-renegotiation cases. In terms of functional form assumptions, recall that we assume
that individual ability, a, has a lognormal distribution, with ln a having mean μa and standard
deviation σa. Match productivity, which is independently distributed with respect to a, also
follows a lognormal distribution, with ln θ having mean μθ and standard deviation σθ. Since the
flow value of unemployment is νb and flow output is νθ, it is difficult to separately identify the
distributions of a and θ. For this reason, we have fixed the mean of ln θ, μθ, to zero. We are not
able to argue that this is an inconsequential normalization.

We begin by discussing the MSM estimates of the model that allows contract renegotiation
between workers and firms. The estimates are presented in the first column of Table 2. Before
discussing the results in detail, it is necessary to provide some intuition. As noted in Section
4.1, under contract renegotiation the amount of the surplus obtained by the worker is impacted
both by the surplus division parameter α and by the rate of contacts with potential employers
while employed, λE,s. It is tautologically true that when α = 1 individuals capture all of the
surplus from the match, but it is also noteworthy that as λE,s → ∞, the worker also gains all
of the surplus from the match, attains a wage equal to ν× θ̄, where θ̄ is the upper bound on
the support of θ, and the market exhibits no unemployment (i.e., the market is in competitive
equilibrium).14 Thus, λE,s is an important determinant both of the steady-state distribution of
match values and the share appropriated by workers.

The first thing to note is the extremely low point estimates of λE,0, λE,1, and α. Whereas
the contact rate among the unemployed is estimated to be 0.522 for the low-schooling group
and 0.203 for the high-schooling group, the estimates of the employed contact rates are 0.016
and 0.012, respectively, over an order of magnitude less for both groups. These estimates imply
that contacts with other firms occur, on average, only every five or six years. The estimated
exogenous job dissolution rates are approximately 50% larger than the contact rates in the
employment state for both schooling groups. The estimated value of α is only 0.091. One of the
focuses of interest is the amount of variation in the ability and match productivity distributions.
We see that they are not very different, with the estimated standard deviations of ability and

14 Recall that λE,s = φsλU,s, so λE,s → ∞ ⇒ λU,s → ∞.
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TABLE 2
PARAMETER ESTIMATES: STANDARD ERRORS CALCULATED USING 100 BOOTSTRAP SAMPLES

Parameter No renegotiation Renegotiation

λU,0 0.342 0.520
(0.003) (0.004)

λE,0 0.048 0.016
(0.001) (0.000)

η0 0.017 0.028
(0.001) (0.001)

θ∗0 0.680 0.140
(0.006) (0.005)

λU,1 0.365 0.207
(0.005) (0.009)

λE,1 0.066 0.011
(0.006) (0.000)

η1 0.008 0.010
(0.001) (0.000)

θ∗1 0.680 0.070
(0.006) (0.002)

α 0.252 0.090
(0.002) (0.002)

h 1.128 1.063
(0.002) (0.001)

μa 3.102 3.015
(0.024) (0.031)

σa 0.142 0.131
(0.005) (0.006)

σθ 0.129 0.151
(0.003) (0.004)

b −0.371 −137.360
(0.004) (5.423)

c 1254.015 1378.577
(29.750) (98.652)

c̃ 28.825 31.688
(0.684) (2.268)

match productivity being 0.128 and 0.152, respectively. Finishing college is estimated to increase
an individual’s ability by 6.27% (ĥ = 1.0627). The total cost of schooling, c, is estimated to be
1155.086. We can provide a more useful interpretation of this number if we consider it to be

c =
∫ 48

0
c̃ exp(−ρt)dt,

where c̃ is the flow cost of college, which is paid for over 48 months. Using ρ = 0.05/12, the flow
cost of college is estimated to be 54.140, which is approximately 2.5 times the average wage
paid to college graduates.

Under the no-renegotiation specification, the estimates of the contact rate parameters λE,0

and λE,1 remain low in comparison with the contact rates when unemployed, but they are
significantly higher than in the renegotiation case. The estimated rates for the low- and high-
schooling groups are 0.048 and 0.066, which imply average arrival rates of approximately 21
and 15 months, respectively. For both schooling groups, these rates are substantially larger
than the exogenous dismissal rates (0.017 and 0.008 for the low- and high-schooling groups).
The surplus division parameter estimate is 0.252 in this specification, which is almost three
times larger than the estimate under the renegotiation assumption. This is to be expected, of
course, since the path to obtaining larger shares of the surplus through firm competition has
been shut down. Under this specification, the standard deviations of native ability and match
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productivity are of similar size to the estimates obtained under the renegotiation assumption,
although the estimated standard deviation of match heterogeneity, 0.129, is now less than
the estimated standard deviation of native ability, 0.142. In this specification, the estimate of
the percentage increase in ability due to college completion rises to 12.8, approximately twice
the value obtained under the renegotiation assumption. The cost of schooling is estimated to
be 1254.015, which yields an estimated flow cost of schooling (c̃) of 58.777.

For completeness, we also report here the estimated values ofψ0 andψ1, which are used when
conducting the policy experiments below in general equilibrium. Given a choice of the elasticity
δs and TFP15 of the matching function, ψs can be estimated using the free entry condition for
s = 0, 1, as described in Section 7.4. For our preferred model with no renegotiation, we estimate
flow costs of 317.42 in the low-schooling market and 311.65 in the high-schooling market. Since
this cost can be arbitrarily scaled by different choices of the TFP parameter, it is not possible
to give any meaningful interpretation of these numbers, but it is interesting that the costs are
similar under these symmetric normalizations.

In the first column of Table 3, we present the values of the sample characteristics used in defin-
ing the MSM estimator, and the second column contains the fitted values from the renegotiation
specification. One can see that the renegotiation model fits several sample characteristics quite
poorly, the most notable ones being the probability that an individual who was unemployed at
baseline was employed one year later (0.682 [data] versus 0.957 [model] for the low-schooling
group and 0.739 [data] versus 0.871 [model] for the high-schooling group) and the probability
that an individual who was at a different employer at times 0 and 1 had no intervening unem-
ployment spell (0.704 [data] versus 0.199 [model] for the low-schooling group and 0.791 [data]
versus 0.408 [model] for the high-schooling group). The no-renegotiation model (column 3),
while also fitting some moments relatively poorly, performs much better overall. In terms of
sample characteristics discussed above, the estimated probability that an individual who was
unemployed at time 0 is employed one year later is 0.919 for the low-schooling group and 0.892
for the high-schooling group, whereas the estimated probability that an individual working at a
different firm at time 1 had any unemployment in the intervening period is 0.459 for the low-
schooling group and 0.625 for the high-schooling group. Both specifications of the model clearly
have some difficulty generating state occupancy probabilities and state transition probabilities
simultaneously, which is not unexpected. The stationarity assumption is clearly at odds with
reality, and the simplicity of the model structure further curtails our ability to fit both types of
probabilities. For example, if job acceptance decisions were functions of an individual’s ability,
the length of time spent in unemployment search would not be (unconditionally) distributed as
an exponential random variable. However, given the model structure that leads to job accep-
tance decisions that are independent of ability, all individuals of the same schooling class will
have a constant exit rate from unemployed search.

On a more positive note, both specifications of the bargaining model perform relatively well
in terms of fitting moments of the wage distribution and wage changes between times 0 and
1, conditional on mobility status. In general, the no-renegotiation model seems to fit second-
order moments better, and the renegotiation specification does a better job fitting first-order
moments. In the end, the no-renegotiation specification fits this set of characteristics better than
the renegotiation specification, with the distance measures being 2.050 and 4.840, respectively.
This result is consistent with what is found in Flinn and Mabli (2009), where bootstrap-based
hypothesis tests were used to select the no-renegotiation specification as the one most consistent
with the data. Given that we also find the point estimates associated with the no-renegotiation
specification to be more reasonable, the remainder of our quantitative analysis uses these
estimates.

15 In our application, we normalize this value to 1.
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TABLE 3
MOMENTS AND MODEL FIT

Moment Data No renegotiation Renegotiation

Low-schooling moments
P[E0 = 0] 0.058 0.046 0.049
P[E1 = 1 | E0 = 1] 0.943 0.959 0.942
P[E1 = 1 | E0 = 0] 0.682 0.919 0.937
P[m0 = m1] 0.691 0.710 0.654
P[m0 �= m1] 0.252 0.259 0.305
P[m0 �= m1 | wksu = 0] 0.704 0.458 0.201
E[Nu | E0 = 1, E1 = 1] 0.104 0.147 0.271
E[Fu | E0 = 1] 0.036 0.035 0.044
E[Fu | E0 = 0] 0.499 0.287 0.208
E[w0 | m0 = m1] 15.029 15.388 12.949
E[w2

0 | m0 = m1] 267.966 240.644 262.133
E[w0 | m0 �= m1, wksu = 0] 13.057 14.121 12.257
E[w1 | m0 �= m1, wksu = 0] 14.474 15.456 18.175
E[w0 × w1 | m0 �= m1, wksu = 0] 214.094 221.070 227.518
E[w2

0 | m0 �= m1, wksu = 0] 206.890 202.510 239.987
E[w2

1 | m0 �= m1, wksu = 0] 261.817 242.494 339.861
High-schooling moments

P[E0 = 0] 0.021 0.023 0.050
P[E1 = 1 | E0 = 1] 0.974 0.977 0.953
P[E1 = 1 | E0 = 0] 0.739 0.892 0.871
P[m0 = m1] 0.748 0.795 0.834
P[m0 �= m1] 0.227 0.186 0.125
P[m0 �= m1 | wksu = 0] 0.791 0.625 0.409
E[Nu | E0 = 1, E1 = 1] 0.061 0.071 0.075
E[Fu | E0 = 1] 0.017 0.017 0.031
E[Fu | E0 = 0] 0.461 0.288 0.388
E[w0 | m0 = m1] 21.951 24.785 21.292
E[w2

0 | m0 = m1] 554.670 621.291 616.738
E[w0 | m0 �= m1, wksu = 0] 19.506 22.363 19.620
E[w1 | m0 �= m1, wksu = 0] 23.422 24.340 24.731
E[w0 × w1 | m0 �= m1, wksu = 0] 520.038 549.974 485.229
E[w2

0 | m0 �= m1, wksu = 0] 463.099 507.211 576.119
E[w2

1 | m0 �= m1, wksu = 0] 645.396 599.172 630.291
Combined moments

Labor share 0.670 0.669 0.674
P[s = 1] 0.268 0.268 0.268

Model fit
(MN − M̃(ω))′Wn(MN − M̃(ω)) 2.050 4.840

9. POLICY EXPERIMENTS

In this section, we use our estimates to examine the welfare effect of two potentially relevant
policy interventions: the imposition of a minimum wage and a subsidy to the cost of schooling.
There are (at least) two criteria by which one might reasonably evaluate these policies. Without
redistribution, a natural welfare candidate is just an appropriately weighted sum of (ex ante)
worker welfare. We define

W0 =
∫ a∗

VU,0(a)dF (a) +
∫

a∗
(VU,1(ah) − c)dF (a).(10)

This is the population expectation of ex ante values to workers whose education decisions
are characterized by a cutoff type, a∗. Since the minimum wage is typically thought of as
a parsimonious policy instrument for improving outcomes for workers, this is the primary
criterion to evaluate the merits of such a policy. However, as in Flinn (2006) and Flinn and
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Mabli (2009), minimum wages can also have beneficial efficiency effects as well, and this is even
more likely to be the case when schooling decisions are endogenous.

We will also define a measure of aggregate resources in the steady state, and this will be of
particular interest when considering a government policy to affect the cost of schooling. We
define the flow of total resources in market s in the steady state as

Ys = (1 − Us)
∫ ∫

ahsθdHE,s(θ|a,m)dFE,s(a|m) + Us

∫
bahsdHU,s(a|m)︸ ︷︷ ︸

Output

(11)

− φs(1 − Us) + Us

ks
ψs︸ ︷︷ ︸

Vacancy Cost=VCs

.

Now, let P1 = F̃ (a∗) be the schooling rate. In the steady state, the planner’s welfare criterion is

W1 = (1 − P1) · Y0/ρ+ P1 · (Y1/ρ− c).(12)

To understand the efficiency properties of this model, it is important to recognize the different
effects at play. First, our bargaining assumptions imply that the returns to education in aggregate
resources are not aligned with workers’ private returns; this is the standard “holdup” problem.
Second, firms’ incentives to post vacancies are not aligned with the planner’s, which is once again
due to the bargaining assumptions of the model and assumptions on the match technology. This
issue, commonly referred to as a “congestion externality,” is also at play here. Policies that
push firms closer to the planner’s choice of vacancy posting will produce efficiency gains,
ceterus paribus. Finally, since the schooling decisions of workers affect the firm’s conditional
expectation of worker ability in each market, there is an additional externality here that creates
market inefficiencies. This was the effect highlighted by Charlot and Decreuse (2005, 2010).

To enrich our understanding of how these effects exhibit themselves in our model, we perform
a series of experiments in Appendix A to determine their relative degrees of importance.

9.1. The Minimum Wage. In this section, we examine the labor market consequences of
imposing a minimum wage, m. In order to better understand the effects at play, we first perform
this experiment in partial equilibrium, with fixed contact rates, before allowing the contact rates
to be determined endogenously through the free entry condition. As we discuss in Section 7.4,
this requires us to take a stand on the elasticity, δs, of the matching function. Here we assume
that δ0 = δ1 = 0.5; however, in Appendix A.4 we briefly consider the sensitivity of these results
to different choices of δ0 and δ1. In addition, we examine welfare changes both when workers’
education decisions are fixed at the level found in our estimates and when workers are allowed
to make their investment decisions to maximize their welfare given the value of the minimum
wage, m.

We begin by keeping contact rates fixed (the partial equilibrium case). We consider the
welfare effect of setting the minimum hourly wage in the range between $5 and $30. In this case,
the only welfare consideration is the trade-off between making low matches more profitable to
the worker and increasing the probability that a given match is unacceptable to the firm. By
increasing all wages bargained at less than m, surplus is transferred from the firm to the worker.
However, for any worker of type ν, the minimum wage will render all previously acceptable
matches untenable when

θ <
m
ν

(13)
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FIGURE 1

THE UNCONDITIONAL DISTRIBUTION OF POTENTIAL OUTPUTS IN EACH MARKET

FIGURE 2

TOTAL WORKER WELFARE IN PARTIAL EQUILIBRIUM (FIXED k) WITH AND WITHOUT ENDOGENOUS SCHOOLING

To examine the potential effect of (13), we consider the density across potential outputs
in worker–match pairs. This is achieved by integrating across combinations of ahsθ using the
unconditional density of worker types in each market (f (a | a < a∗) and f (a |a ≥ a∗)) and the
density g of potential match draws. We take a∗ from our estimates. Figure 1 shows the cumu-
lative distribution across potential outputs in each market. To facilitate analysis, we consider
a minimum wage of $17 an hour. At this choice, we see that approximately 11% of potential
matches are no longer viable in the low-schooling market, whereas virtually no matches in the
high-schooling market bind against this constraint.

Figure 2 contains the results of our first exercise. The hump shape in worker welfare
shows these countervailing effects at work for both cases (fixed versus endogenous schooling).
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FIGURE 3

PERCENTAGE CHANGE IN WORKER WELFARE IN PARTIAL EQUILIBRIUM FOR THE LOWEST AND MEDIAN WORKER TYPES

Although raising the minimum wage increases worker welfare by increasing the return to low
matches, increasingly more combinations of a and θ are made unacceptable to the firm, the effect
of which begins to dominate. Allowing workers to adjust their schooling decision yields extra
gains in welfare, as some workers are able to increase their productivity and hence increase the
range of viable matches.

Another relevant consideration when selecting the minimum wage concerns the distributional
effects of such a policy. The results in Figure 2 suggest an “optimal” minimum wage between
$20 and $22 an hour. However, it is not clear at this level what the consequences are for the
welfare of people at the bottom end of the skill distribution. Knowing the consequences of the
minimum wage across the spectrum of heterogeneity is an important policy input and was not
considered in Flinn (2006) since individuals were assumed to be identical ex ante.

To investigate this, we evaluate welfare changes for workers of different ability types, a. Let
VU,s(ahs; m) indicate the value in unemployment to a worker of type a when the minimum wage
is set at m. We calculate

%�W0(ahs; m) ≡ 100

(
V (a; m) − V (a; 0)

V (a; 0)

)
,

V (a; m) = 1{a≥a∗}(VU,1(ahs; m) − c) + 1{a<a∗}VU,0(a; m).

Figure 3 plots this percentage welfare change for two types: the lowest ability and the median
ability type. As we can see in Figure 3, the distributional consequences of the minimum wage
are extreme. We see that low skill types are severely adversely affected by higher minimum
wages. As was argued previously, this is due entirely to the fact that the minimum wage rules out
previously acceptable matches, resigning low-skill workers to long periods of unemployment.
Using a Rawlsian criterion to evaluate the minimum wage policy intervention significantly
recasts our analysis of the “optimal” minimum wage. In particular, looking at minimum wages
in the range of $20–22 per hour, we see that low ability types are significantly less well off than
in the case with no minimum wage.

We now turn to the welfare effect of minimum wages when contact rates are determined
endogenously by firms’ vacancy posting decisions. In this setting the minimum wage transfers
surplus from firms to workers, which induces firms, through the free entry condition, to post
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FIGURE 4

TOTAL WORKER WELFARE IN GENERAL EQUILIBRIUM (ENDOGENOUS k), WITH AND WITHOUT ENDOGENOUS SCHOOLING

fewer vacancies. Hence, the minimum wage forces the contact rate down in both schooling
markets. This will serve to moderate the (average) welfare gains seen in the partial equilibrium
case.

It is worth noting that the magnitudes of these results rest on the responsiveness of firms’
vacancy posting to changes in the surplus they receive from a match. As is illustrated in Hagedorn
and Manovskii (2008), this elasticity is tightly linked to the size of firms’ profits. Within the model
there are two key parameters that may effect the size of profits: the flow value of unemployment,
b, and the worker’s bargaining share, α. In particular, Hornstein et al. (2011) note that to match
frictional wage dispersion, structural estimates of search models often produce small or even
negative estimates of b. Aside from philosophical differences on what constitutes “reasonable”
estimates of b, we are unconcerned by this for two additional reasons. First, this analysis applies
only to models without on-the-job search; hence it is not clear if this critique applies in our
case. Second, since we target labor’s share of output, a small estimate of b will not affect the
mean size of firms’ profits, since other parameters (such as bargaining power) will adjust to keep
the mean share of payments to labor at their empirical level. Looking outside the model, it is
reasonable to expect that including payments to capital, as in Hagedorn and Manovskii (2008),
will increase the responsiveness of market tightness to the policy changes considered here. We
apply this caveat to our analysis below.

An additional effect to consider in the case of endogenous schooling choices is the selection
effect. As the schooling rate increases, the conditional expectation of ability in both markets
decreases, which drives down contact rates even further. We can see both of these effects at
play in Figure 4. Welfare returns to the minimum wage are dampened in both cases (with and
without a schooling choice), which implies a smaller “optimal” minimum wage.

The visible kink in welfare for the general equilibrium case with endogenous schooling is
due to a discontinuity in schooling choice; workers at this point pool into the high-schooling
market. The sudden change in the composition of abilities forces a discontinuous decrease in the
contact rate, which causes the drop in welfare that we see. This case highlights the importance
of selection effects in our model. We further discuss this effect when considering the efficiency
properties of the minimum wage.

To complete our analysis of worker welfare, in Figure 5 we replicate Figure 3 to see the effects
of minimum wage changes across different types. The general patterns found are very similar
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FIGURE 5

PERCENTAGE CHANGE IN WORKER WELFARE IN GENERAL EQUILIBRIUM FOR THE LOWEST AND MEDIAN WORKER TYPES

to the partial equilibrium case; low types suffer dramatically at choices of m close to what we
would consider the “optimal” minimum wage for aggregate welfare.

We have seen that the minimum wage can bring improvements to worker welfare. However,
are these changes efficient from the perspective of a social planner who attempts to maximize
aggregate resources? We answer this question by computing the aggregate effects of minimum
wages between 5 and 23 dollars.

Following our approach for worker welfare, we first conduct this experiment by fixing the
schooling cutoff decision at the a∗ implied by our model estimates. Figure 6 shows the high-
and low-schooling components of the planner’s welfare criterion, W1, along with the contact
rates λU,s for s = 0, 1. We see that increasing the minimum wage brings efficiency gains in
both markets. The optimal minimum wage in the low-schooling market is approximately 18,
whereas the optimal minimum wage in the high-schooling market is approximately 28. Even
though contact rates decrease in both markets, aggregate resources improve. This suggests that
congestion externalities are being resolved in both markets. That is, firms are posting too many
vacancies from the perspective of the planner. Imposing a minimum wage transfers surplus
from the firm to the worker and corrects this, reducing the cost of vacancies in both markets.
In Appendix A.2, we see that similar gains can be achieved by increasing worker bargaining
power, similar to the well-known condition of Hosios (1990). Clearly, the hump shape in the
planner’s welfare is produced by a trade-off, since at some point the loss in resources generated
by lower contact rates will outweigh the reduction in vacancy posting costs. Additionally, the
rising minimum wage rules out progressively more matches that generate positive social surplus
but are unprofitable to the firm.

We next consider the general equilibrium case in which schooling choices are endogenized.
Figure 7 shows the unemployment rate, total output (excluding vacancy costs), the schooling
rate, and the planner’s measure of welfare, W1, as defined in Equation (12). The aggregate effects
of this policy intervention are once again quite striking. We highlight several points of interest.
First, the schooling rate is highly nonmonotonic, displaying a hump shape before jumping to
100% at around 15. This extreme response is produced in large part due to our assumption
that all individuals face the same cost of schooling, c. Second, the function exhibits two similar
“humps.” The first appears approximately at this jump point as workers shift discontinuously
into the high-schooling market. The second, and optimal, point occurs at approximately 22, at
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FIGURE 6

PLANNER WELFARE AND CONTACT RATES FOR THE MINIMUM WAGE POLICY EXPERIMENT WITH FIXED SCHOOLING

FIGURE 7

PLANNER WELFARE, OUTPUT, UNEMPLOYMENT, AND THE SCHOOLING RATE FOR THE MINIMUM WAGE POLICY EXPERIMENT WITH

ENDOGENOUS SCHOOLING
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which point everyone in the market has chosen to invest in schooling. Aside from the dramatic
shift in schooling, the general pattern of the results is the same as for the case of fixed schooling.

To understand the nonmonotonicity in schooling rates, we look at the countervailing forces
at play. By equalizing all bargained wages less than m in both markets, the relative value of the
low-schooling market should increase. However, for any worker of type ν, the lower bound on
viable matches will increase as m increases, as per Equation (13). This effect will reduce the
relative value of the low-schooling choice, since more matches will bind against this constraint
than in the high-schooling market. Finally, although m reduces the value of vacancy posting
to firms in both markets, the extent of this is more severe in the low-schooling market, where
average worker skills are lower. This implies that the effect on contact rates through vacancy
posting is stronger in the low-schooling market, a result that is in line with the results of our
example with fixed schooling shown in Figure 6.

Why are the effects on the schooling rate so extreme in this model? This relates to an
instability produced by selection effects. As the schooling rate increases, due to increases in m,
the relative mass of abilities in the low-schooling market shifts downward. This decreases the
relative profitability of successful matches as well as the probability of finding an acceptable
match from the pool of unemployed workers. To satisfy the free-entry condition, the contact
rate must decrease, which forces the schooling rate to increase further. Eventually, we reach a
point at which it is impossible for an active low-schooling market to exist.

The extreme predictions from the general equilibrium experiment make it difficult to interpret
the welfare results of the minimum wage experiment normatively. It is obviously not true that
a minimum wage of $15 or more would induce all workers to attend college. These results
rely quite stringently on the steady state and timing assumptions of worker and firm choices
as well as the parametric assumptions of the model. In particular, workers are pushed into the
schooling decision because firms abandon the low-schooling market altogether and vice versa.
The disappearance of the low-schooling market is in large part an artifact of our assumption
of constant costs of schooling. As in models of labor market signalling, there is good reason to
expect that the costs of higher education are not constant in the population, and that the cost of
schooling is negatively related to one’s ability endowment. Unfortunately, the identification of
a bivariate distribution of ability and schooling cost is beyond the realm of possibility with the
data to which we have access.

9.2. Schooling Subsidies. We now examine the welfare consequences of offering a subsidy
that reduces the cost of schooling c. We assume that a subsidy (or tax) τ is offered, so that
workers who choose to invest will pay c − τ, whereas the planner pays the difference τ for
those who take up schooling. We assume that the subsidy is financed by lump sum trans-
fers, the nature of which we do not specify, except that we require a balanced budget. This
ensures that welfare gains are not created artificially by violating the resource constraint. In
this case, the natural criterion for welfare is W1, the planner’s value, since this criterion is not
affected by the choice of how the lump sum tax burden is assigned. In fact, it is easy to see that
in this case, since financing of the subsidy does not appear in the output equation, this policy is
equivalent in aggregate welfare terms to forcing a change in a∗.16

Looking to Figure 8 for the results of this experiment, we see that a positive schooling subsidy
improves planner welfare, reduces aggregate unemployment, and increases production in the
economy. There is a sharp contrast between this aggregate result and the effect of the subsidy
on each individual schooling market. In Figure 9, we plot the unemployment rate, Us, and the
flow of total resources, Ys, as defined in Equation (11), for each market s = 0, 1. We see that
in each submarket the subsidy increases unemployment and decreases total resources. To see
why, recall that as τ increases, more workers are shifted from the low-schooling to the high-
schooling market. As noted already, this shifts the conditional expectation of worker ability in

16 Of course, if we assumed that the subsidy was financed by a tax on labor earnings or vacancy posting, then this
would no longer be the case.



392 FLINN AND MULLINS

FIGURE 8

PLANNER WELFARE, OUTPUT, UNEMPLOYMENT, AND THE SCHOOLING RATE FOR THE SCHOOLING SUBSIDY POLICY EXPERIMENT

(ENDOGENOUS SCHOOLING)

FIGURE 9

TOTAL RESOURCES AND UNEMPLOYMENT IN EACH SCHOOLING MARKET

both markets downwards. Accordingly, the free entry condition requires that firms post fewer
vacancies and the contact rate decreases. The end result is that the mean flow of resources
produced by each submarket decreases and the unemployment rate increases.

If this is true of each submarket, how can the aggregate effect across both markets look so
different? The answer here combines the fact that (1) the flow of resources is higher and the
unemployment rate is lower in the high-schooling market and (2) the schooling subsidy shifts
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workers from low to high schooling. Therefore, there is a composition effect that improves
output and unemployment in the average across both submarkets. To make this clear, consider
the expression for the flow of total resources

Y = (1 − P1) · Y0 + P1 · Y1.

Taking a derivative with respect to the policy variable τ we get

∂Y
∂τ

= (1 − P1) · ∂Y0

∂τ
+ P1

∂Y1

∂τ
+ ∂P1

∂τ
(Y1 − Y0)︸ ︷︷ ︸

Composition Effect

.

Hence, in our application, even though Y0 and Y1 decrease in response to increases in τ, the
composition effect from moving workers into the high-schooling market dominates the first two
terms in the expression above.

10. CONCLUSION

In this article, we have developed a labor market model of search, matching, and bargaining
that allows for pre-entry productivity-enhancing investments by workers. Although the model
is highly stylized, it incorporates elements of the schooling investment decision that have not
previously been investigated empirically. Individuals on the supply side of the model made
investment decisions, which were assumed to be binary, and their choices depended on all
parameters characterizing the labor market environment as well as institutional characteristics
such as the presence of a minimum wage and schooling subsidies. Schooling investment en-
hanced the native ability of the individual, and flow productivity in the model was the product
of individual ability and match productivity. We estimated two specifications of the model that
includes on-the-job search, which differed in their bargaining protocols. Our estimates indi-
cated that the population variances of ability and match heterogeneity were roughly the same.
We opted to utilize estimates from the model in which firms did not renegotiate employment
contracts with workers, since the overall goodness of fit was better under this specification and
it produced more reasonable estimates of key model parameters.

We used the estimates to conduct two types of policy experiments. In the first, we examined
the impact of minimum wages on two welfare measures, one of which was a general measure of
worker welfare and the other was a measure of aggregate productivity. Since wages are relatively
high for both schooling classes, only very high minimum wages were binding, and we found that
there were welfare gains in terms of both welfare measures from imposing binding minimum
wages. This result persists whether one considers contact rate parameters as fixed or not and
allowing adjustment in schooling levels or not. Many of these results are qualitatively similar
to what was found by Flinn (2006), although he assumed no on-the-job search, no individual
heterogeneity in ability, and did not allow for schooling decisions. The key difference, however,
is that we allow for individual heterogeneity in flow productivity and find that minimum wages
have very unequal welfare consequences across the ability distribution. Low-ability individuals,
even after increasing their schooling attainment, are the ones who are increasingly priced out
of the market as the minimum wage increases. The use of a Rawlsian criterion for choosing the
minimum wage that maximizes the ex ante welfare of the least able labor market participant
would yield very different implications regarding the optimal minimum wage.

The results of our schooling cost subsidy experiment yielded similar conclusions, since the
schooling subsidy induces more individuals to enter the high-schooling market. This increases
average productivity, which is beneficial, and it also decreases vacancy creation in both markets.
Given our estimates, this is actually beneficial, since we found that firms were initially posting
too many vacancies in each market. We did not explicitly consider how the schooling subsidies
were to be financed, other than suggesting the use of a lump-sum tax. If, more realistically, the
subsidy was paid for through a tax on labor earnings, the impact of the subsidy may be less
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beneficial due to the distortion. We did not consider the possibility of using both a minimum
wage and a schooling subsidy as policy instruments, but such an analysis is feasible and may
produce results of some policy interest.

We have estimated one of the first general equilibrium models of schooling investment in a
search environment and believe that our results are of importance for policy debates regarding
minimum wages and tuition subsidies. Although both types of policies may have beneficial
effects at the aggregate level, measured either in terms of individual welfare or efficiency,
their payoffs are very different across subpopulations. High levels of the minimum wage may
disproportionately harm those they are designed to help while proving more beneficial for
those with intermediate levels of ability. Similarly, untargeted tuition subsidies are pure rents
to those who would have gone to school without the subsidy and disproportionately help
those with intermediate levels of ability. These results suggest that more careful analysis of the
distributional impacts of these types of policies is required prior to their implementation.

APPENDIX: EFFICIENCY PROPERTIES OF THE MODEL

How might the two policy interventions we consider in this article produce efficiency gains?
To understand this question, we examine three sources of inefficiency in the model.

A.1. The holdup Problem. When worker bargaining power is less than one (α < 1), one
concern is that the worker’s return to education is less than that of the planner and hence the
schooling take-up rate in equilibrium is too low. This argument does not consider the fact that
the subsequent labor markets suffer their own inefficiencies. In particular, firms in either market
may post too many or too few vacancies.17 The relative size of these inefficiencies may offset
or even outweigh the benefit of moving workers into the high education market. In partial
equilibrium, it is simply the relative difference in vacancy costs per worker that factors into
welfare calculations.

We examine the change in welfare when the cutoff decision in schooling is adjusted. To make
the above point clear, we calculate W1 both with and without the vacancy posting cost in (11),
which we call VCs. Further, to isolate both effects, we do not recompute the contact rates in
each market in general equilibrium.

Figure A1 produces a dramatic contrast. Ignoring the vacancy posting cost (and hence the
relative inefficiencies of each market) suggests that the optimal schooling rate is about 70%.
However, once we include the vacancy posting cost, we obtain the opposite conclusion: that
the equilibrium schooling rate is too high. In this experiment, the cost to the planner of moving
a worker from the low- to the high-schooling market is (VC1 − VC0)/ρ+ c. We calculate the
difference in present value vacancy cost per worker, (VC1 − VC0)/ρ, to be $388.46 in hourly
wage value, which is nearly one-third of the schooling cost. This magnitude explains why
including these costs dramatically changes our analysis.

This contrast highlights an important result. In this model, vacancy posting decisions are
just as relevant for welfare as the schooling decision. The question of whether or not this firm
decision is efficient is the subject of the next section.

A.2. Congestion Externalities. Although addressing the holdup problem is a key policy
goal, our assumptions concerning the labor market introduces another important dynamic.
A well-known inefficiency in search and matching models arises from two wedges between
the firm’s vacancy posting decision and that of the planner. The first is the wedge between the
joint surplus to the worker and the firm and the surplus to the planner of a match. Since the
firm claims only a fraction (1 − α) of the surplus generated by a match, the surplus to the firm
tends to be less than the joint surplus in the planner’s problem. This wedge would induce firms
to post too few vacancies. To countervail this effect, firms do not consider the marginal effect

17 See the next section on congestion externalities for further discussion.
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FIGURE A1

EFFECT OF CHANGES IN THE SCHOOLING RATE ON PLANNER WELFARE IN PARTIAL EQUILIBRIUM (FIXED k) INCLUDING AND

EXCLUDING THE COST OF VACANCIES

that their posting decisions have on the contact rate in equilibrium. This congestion externality
leads firms to post too many vacancies. In rare cases, these two effects will perfectly counteract
each other and the market equilibrium is efficient. In the market without on-the-job search and
homogeneous matches, this occurs when α = δ, the well-known Hosios (1990) condition.

In our application, such a clean condition is not obtainable. However, the same principle leads
us to conjecture that adjustments in the bargaining power will result in welfare improvements.
To see this, we solve for equilibrium market tightness ks for each market s = 0, 1, keeping
the schooling rate fixed. Figure A2 shows the effect of congestion externalities at work. As
surplus is transferred from the firm to the worker, welfare improves. This suggests that, ceterus
paribus, firms post too many vacancies in equilibrium. In addition, we see that these welfare
improvements are more significant when the distance between α and δ, the elasticity of the
firm’s contact rate with respect to k, is greater. This is suggestive of a “Hosios-like” condition.
These observations are all important when considering the welfare effect of minimum wages in
Section 9.1.

A.3. Selection Effects. The final effect we must consider takes place as follows. Since the
schooling decision is characterized by a cutoff type a∗ that is indifferent between each level
of schooling, the average stock of human capital in each market is characterized by a pair of
truncated expectations, E[a | a < a∗], E[a | a > a∗]. As the cutoff a∗ decreases, the schooling
rate increases and both expectations decrease.18

Since increasing the schooling rate lowers mean ability in each market, this lowers the mean
payoff to a match for the firm and hence decreases the contact rate for workers in both markets.
This effect will temper any welfare gains from improving the schooling rate. We see this effect
at play in Section 9.2, when evaluating schooling subsidies.

A.4. Robustness: Different Elasticities. In this section, we briefly examine whether our wel-
fare experiments are robust to different choices in the match elasticity, δs. In particular, we
would like to know how sensitive our results are to the assumption that δ0 = δ1 across both

18 Of course, the mean stock of human capital in the economy will increase.
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FIGURE A2

EFFECT OF CHANGES IN WORKER BARGAINING POWER ON PLANNER WELFARE IN GENERAL EQUILIBRIUM WITH FIXED

SCHOOLING FOR THE HIGH- AND LOW-SCHOOLING MARKETS

FIGURE A3

MINIMUM WAGE EXPERIMENT IN GENERAL EQUILIBRIUM FOR DIFFERENT CHOICES OF (δ0, δ1)

markets. To evaluate this, we repeat the minimum wage experiment from Section 9.1 with
several choices of elasticities (δ0, δ1). Figure A3 shows the results.

We find that the results are qualitatively the same. It does appear that the choice of the pair
(δ0, δ1) affects the magnitude of welfare gains but does not seem to greatly affect the choice
of an optimal minimum wage. The one pattern that emerges was predicted by our analysis in
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Section A.2; the greater the distance between α and δ, the more significant the welfare gains
from increasing m. Hence, welfare gains to the right of the discontinuity (where the schooling
rate jumps to 100%) are greatest when δ1 = 0.6 and smallest when δ1 = 0.4. Similarly, to the left
of this discontinuity, we see the greatest gains in welfare when δ0 = 0.6. The upper and lower
bounds on the “optimal” minimum wage remain fairly tight between approximately 21.50 and
22.50.
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