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A Details of Model Solution

The additive representation can be shown by taking the form of the solution as given, and showing that the
recursion preserves this relationship. Note that in the terminal period, the value function is simply Vr(0) =

(1 — B)Lagxlog(#) and so this form holds at T. We have:

Vit (x, 0) = Ec max {Ukj(C, 0) + €j + BE sy 0 Vit+1(X)] + Bavs1,1(5rlog(I) + 6 log(G))}
where we have written ¢ already in terms of I and 6. Fixing the discrete choice j fixes net income, Y3;(x) and
conditional on this choice the optimal investment problem has a simple solution:
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= ——————Y(x
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PH+F; 1
which can be substituted into the problem above to get:
Vi (6,6) = Bemax { Uy (00 + & + BE iy Vira () } + v log(6)

where ayr = agr + Bdgay 41 as in the main text and indirect utility U takes the form in the main text.

Note that oy is scaled uniformly by g and so it can be rewritten as:
avir = aglt, Ty =1+ Bt

Accordingly, I'; from the main text is defined as I'; = § [,Bft+]_.

B Identification

This section derives the expressions that comprise the linear system in equation (2). The system is four
dimensional, corresponding to five choice comparisons: (1) using paid care vs not, conditional on participation
and work; (2) working vs not, conditional on participation; (3) participating in welfare vs not, assuming no
time limit; (4) participating in welfare vs not, assuming a time limit; and (5) participating in food stamps vs

no participation.



In what follows, it is useful to recall that the following fact about nested logit choice probabilities. Consider

the log-odds ratio for choosing nest B; vs nest Bs:
log (B(B1)/P(Bz)) = ;' (V1 = W)

where V, is the inclusive value of choosing this nest and o; is the dispersion parameter for choices across nests

in this layer, [. The inclusive value V; can likewise be written as:
Vi =Vj —o14110g(P(j € By))

where V; is the value of making choice j. This could be a final value if j is a single choice, or an inclusive value
if j is another nest.

It will also be useful to define the concept of finite dependence (Arcidiacono and Miller 2011). A model
exhibits finite dependence if for any two choices there exists a sequence of future choices that returns the
individual back to the same distribution of state variables. When this is the case, the formula above can
be applied iteratively until the period at which the states are in the same distribution, at which point the
difference in the values of the two options differences out, and we are left with a sequence of utilities and choice
probabilities.

Finite dependence is simple here as the only choice affecting future states is participation. Consider the
comparison of welfare participation P, = 2 vs not P, = 1 at time ¢t. Without time limits, individuals differ at
t + 1 in terms of lagged participation, but will return to the same state at ¢ + 2 with P/ =1 and P, = 1. In
a world with time limits, we require a two-period sequence: (P{ =1, P = 1) and (Pj = 2, Py = 1) which will
return individuals to the same state at t + 3. These sequences will be applied below when deriving ratios of

participation choice probabilities.

Child Care Choices

This first equation for child care choices is derived in the main text:

log(px(F, X, Z)) = 03_1 [(1 + g I't) log (f’k,F(P, X, Z)) +apg + ag’klﬂtgg} (1)

and identification of the pair o5 1(1 + o I't) and (ap ) + ap 192 can be derived from variation in Z alone or

from X also. For example, differencing across Z and Z' gives:

prr(P, X, Z’>> . Yi..r(P, X, 2"
log| —=—->—"—") =0 14+ apIy)lo _—
g<pk,F<P,X,Z> s ool | G2 om0

With this slope term in hand, the age-specific term ary + ag 't pins down the level.

Labor Supply

As above, define

ﬁk‘,H PaXaZ
( ) pi(H = 0[P, x)



as the relative choice probability of working in state x = (X, Z), conditional on participation P. It will be
useful to also define the proportional return to working as:

Yi(H =1,P, X, Z)

Yiu(P,X,Z) = :
wi(B X 2) = 5 =0,P.X,2)

For convenience let us also define:
per(P, X, Z)=PF=1H=1,P, X, 7]

With these expressions, the nested conditional choice probability for the work choice can be written as:

log (pr,u (P, X, Z)) = 05" (am + agplig) +
oyt [(1 + ag 1 I't) log (?k,H(P, X, Z)) + R(X, Z)agA — o3log(l — pp,r(P, X, Z))| (2)

which forms the second row of the linear system in (2).

Notice that three parameters now dictate the responsiveness of labor supply to different components of the
treatment. The term o 1(1 + o 1I'y) is an age-specific semi-elasticity of labor supply with respect to financial
incentives. The term o, Lap determines the response to work requirements through non-pecuniary motives, and
oy lo3 determines the responsiveness of labor supply to childcare costs. All three terms are identified as long
as there is rank-independent variation in returns to work, the existence of work requirements (R(X, 7)), and
childcare prices. In practice this is delivered by all sources of variation in X and Z, conditional on type, but in
principle one could use only variation in Z, as long as there are at least three treatments that vary returns to
work, work requirements, and childcare subsidies in a rank-independent way. This paper’s application has four
treatments that do satisfy these requirements.

Combining these slope terms with the slope terms identified in the previous stage is sufficient to invert out
values for o1, 02, o rI't, apy and go. Returning now to (2), the parameters g; and o remain to pin down
the level of work choice probabilities at each age and in each state.

It may help to note here that if there exists a combination of (X, Z, Z’) such that the only difference in
policies is the existence of mandatory services, this expression implies:

log <p~k’H(1’X’ Zl)) =o' ag
ﬁk,H(LXa Z) 2

This is exactly the case for MFIP in which treatment arms (1) and (2) differ only in the imposition of work

requirements and hence will be an important source of identification for ag.

Program Participation without Time Limits

Because participation decisions dynamically influence future states, more elaborate comparisons are required.
In a slight abuse of notation, let the state x be decomposed into (X, Z, A_1) so that we can indicate values of

A_1 exclusively. Define:
pk[P = 2’X, Z, A_l]
pk[P = 1’X, Z, A_l]

f)k’,A(Xv Zv A—l) =



as the probability of participating in welfare relative to participating only in food stamps. The term

Yi(H=0,P=2X,2)

Via(X,Z) =
ko 2) = =0 P=1,%,2)

is the proportional return in net income to participating in welfare assuming no work. Finally, define:

U a(X,Z, A1) = (1 + agaly) log(Yea(X, Z)) — R(X, Z)ag

—ap(l— A1) —oylog (p’“(H =0P=24%, Z)> (3)

pe(H=0P=1,X,2)

as the difference in static payoffs from choosing P = 2 over P = 1. Putting these expressions together gives:
log(pr,a(X, Z,A1)) = o1 " [g,a(X, Z, A1) + BExx(V(X', Z,A_1 = 1) - V(X', Z,A_; = 0))] .

A simple comparison of this log odds ratio for different values of A_; identifies the application cost ap up to

scale:

1 (ﬁk,A(X, Z, 1)) o
Og T — =
Pra(X, Z,0)

Then in order to difference out the dynamic values, we can exploit the model’s finite dependence to get:

pe(P=1X',21)
p(P=1X",2,0)/]"

log(pr,a(X, Z,A_1)) = o7 Vg, a(X, Z, A1) — B [EX’X log <

This forms the third row of the linear system in (2). Following identical logic to the previous steps, the response
in program participation to benefit generosity is determined by o1 and a comparison between Z and Z’ fixing the
other variables will identify it. The fourth two is the relatively simpler comparison of food stamp participation

with no participation, py s(X, Z) = pp[P = 1| X, Z]/pp[P = 0|1 X, Z]:
log(pr,s(X, Z) = o7 'ag + 07 (1 + agpT'y) log(Yi,s(Z, A))

Program Participation with Time Limits

Following the same notational convention from the previous section, we can derive an expression for pj 4 in the
presence of time limits. First we must further decompose the state x into: (X, Z, A_;,w) where w is cumulative

welfare use. Then we get:
log(pr.a(X, Z, A_1,w)) = oy Ypa(X, Z, A1) + o * [BEx/ x(V(X', Z,1,w+1) = V(X' Z,0,w))] .

In this case, a two-period sequence of decisions places the agent back into the same state space, giving:

}~ (4)

log(pr,a(X, Z, A1, w)) = Ull{ﬂk,A(X, Z,A_1) + BExix | (1 + agply) log(Yi,a(X', Z))

(pk(P =11X",Z,1,w+1)
—o1 log

pr(P=2|X",7,0,w)

P=1X",Z,0,w+1
> — BO’lExulX/ 10g (pk( ‘ )>

pe(P=1X"Z,1,w+1)




which forms the 6th and final row of the linear system. To see how experimental variation can help identify
(B using this equation, note that this expression holds also for the case where time limits do not exist. If time
limits were the only difference in the policy environment between Z and Z’, we would get:
ﬁkA(X,Z/,Afl,w pk(P:HX/,Z,l) pk(P:1|X,,Z,,1,w—|—1)
log | — = BEx/ x |log — log
PrA(X, Z, A1) pr(P =2|X',2,0) pe(P =2|X",2",0,w)

9 p(P=1X",7,0) p(P=1X"7"0,w+1)
Ex» 1 —1 )
+ B Ex | X {Og <pk(P_1|X”,Z,1) og pk(P:1|X”,Z/,1,w+1) ( )

which is an expression that identifies 5 exclusively through the effect of time limits on participation choices.

B.1 A Minimum Distance Estimator

Having derived the system of equations that relates choice probabilities to parameters, this section briefly
describes a minimum distance estimator that exclusively uses random assignment to identify ®3. In practice,
there is one system like (2) for each type k and child age t. For ease of exposition, consider the estimator for
just one pair (k,t) with the understanding that the approach easily generalizes by stacking such equations.

Abusing notation slightly, let Z now jointly indicate experimental site as well as treatment group. Define:
m(2) = [ m(X.Zip)dP(X|2) L€ {0.1)

This gives a linear system:

ho(Z) = Iﬁ:o(‘bg) + K1 ((I))th(Z)

with a natural estimator being:

— ~

By, ®1 = argmin(ho(Z) — ko(P2) — Kk1(P)2h1(2)) "W (ho(Z) — ko(P2) — k1 (P)2h1(Z))

Which is consistent and asymptotically normal for any positive definite W under standard regularity conditions.

C Taxes and Transfers

Total transfers are defined as the sum of taxes, welfare (if participating) and food stamps (if participating).
Let n be the number of children, g the state in which the program takes place, y the year, and w the current

usage of time limits. £ is monthly earnings.

C.1 Taxes

Taxes consist of a federal and a state computation. When earned income is sufficiently low, taxes will arrive
in the form of a net payment (when income tax obligations are exceeded by the EITC). In theory, the relevant
parameters to compute taxes include those that define the federal and state EITC programs, state and federal
deductions and exemptions, and the marginal income tax rate with their corresponding brackets for state and
federal income tax. In practice, I use the TAXSIM model of Feenberg and Coutts 1993, to approximate the
tax function. Given the relevant year, state, and family size, TAXSIM computes net payments/obligations,
Tn:';t(e). This function is called for a fine grid of earnings between $0 and $100,000, then approximated using a

polynomial spline function with year, state and family size-specific coefficients.



C.2 Control Groups

AFDC payments follow the formula:
AFDC(g,n,y, E) = max{B(g,n,y) — (1 — 0.33) max{E — 120,0},0}
where B(g,n,y) is the benefit standard. Food stamp payments are:

SNAP(g,n,y, F) = G(g,n,y) — 0.3(0.8E + AFDC — 134)

C.3 MFIP

: Both arms of MFIP change benefit formulae to:
MFIP(g,n,y, E) = max{min{1.2(B(g,n,y) + G(g,n,y)) — (1 — 0.38)E, B(g,n,y) + G(g,n,y)},0}

where B and G are the benefit standards and maximum food stamp payment in Minnesota for each number
of kids (n) and year (y). Hence, food stamps and welfare are disregarded at the same rate rather than the

double-deduction that occurs when AFDC payments are deducted from food stamps.

C.4 CT-Jobs First

The welfare payment for CTJF also folds in food stamps and features a “cliff” in benefits at the eligibility
cutoff:

CTJF(g,n,y, E) = {E < PG(n,y)}(B(g,n,y) + G(g,n,y))

where PG (n,y) is the poverty guidelines for a family of size n in year y.

C.5 FTP

The benefit formula for FTP is:
FTP(g,n,y, F) = max{B(g,n,y) — 0.5 max{E — 200,0},0}

Food stamps are the same as the control group.

D Details of Estimation

D.1 First Stage
We collect parameters into three blocks:
61 = (aA) ags,ag,ap, g, xR, p, ﬁra g, ﬁv Y, bw, BWa Ony Mg, Iqu )‘05 )\17 5, Mo, 0o, )\R)

O2 = (ow, 0yq)

O3 = (/BTa 7T17,0)



Recall that y,,, = {ymt}tTQl is the panel of observed outcomes for mother m in period t. Let W,, = {Wm,t}tT;’ll
be observable components of the state space for mother m in each period ¢. As in the main text, x, is the
vector of state variables that determine the distribution of outcomes. For simplicity, let dependence of x;,; on

n and W, ; be implied whenever necessary. The likelihood is:

K Tm K’?
L= Z log Z Z Z ]P[ym,t|Xm,t7 O1, @2]Pk [nm,t+1|77m,t7 61]7r77,0[771|k’7 Xf,m]P[k|X‘r,ma @3]
m k=1 t=1 ;=0

The expectation maximization routine proceeds as follows, fixing a current guess of parameters, ©'.

E-Step Using ©!, construct posterior probabilities for the latent state (k,7;) in each time period:
th(ny k) = P[k‘, n‘ymv X, @l]

th(nt+17 Mt k) = P[T/t+17 Mt k|ym7 va @l]

This problem is made tractable by exploiting the Markov structure of the outcome probabilities using the

forward-back algorithm.

M-Step Using the weights ¢,,, update ©! by moving up the likelihood:
L(©) =Y "> | log(P[n, k|O3])gm,1(n, k)+
m k

D 1og (Plym.tlXm.t O1,02]) gt (0, k) + > Piln|n, ©1lame (7', n, k)| (6)
t n n'

This maximization step is additively separable in each of the three blocks. One iteration of the step

involves:

(a) Updating ©) with 5 iterations of the LBFGS algorithm using Optim. j1 (Mogensen and Riseth 2018)
with automatic differentiation using ForwardDiff.jl (Revels, Lubin, and Papamarkou 2016). This
is completed in a number of separate block steps. Each evaluation of this piece of the likelihood

requires solution of the model via backward induction.

(b) Update ©L with the new maximizer, which is given as a pair of weighted standard deviations for

predicted wage and price residuals.

(¢) Update the coefficients that determine type probabilities, 8;, by maximizing the weighted initial type
likelihood using LBFGS, and updating ;o with the new maximizer which is given by a weighted

frequency estimator.

This process is repeated until ©! and ©+1 satisfy a convergence criterion. Standard errors are estimated using

the covariance of the score equation for each panel observation.



D.2 Second Stage - Production

Let X,,, be a vector of location dummies and Z,, be a full set of location-treatment interaction dummies. The

moment condition (4) implies a system of equations:
I, = X1l + Z 105 + 1y

Where the terms 7, and &, are expectation errors with unknown distribution. Their distribution is approxi-
mated as a joint normal, allowing for a likelihood to be written for the factor score S and inputs I conditional

on X,, and Z,,. The priors are:
e 07 ~ UJ0,2]
e 5y ~U[0,1]
* 91,92 ~ U[-2,2]

To see that these priors are loose, the upper bound on §; implies that a log point increase in net household
income would yield a 2 standard deviation increase in skills. A flat (i.e. improper) prior is specified for the
parameters (II1,1I5, A). Estimates and figures reported in the main text are derived from 10,000 draws from
a No-U-Turn Hamiltonian Monte-Carlo chain (Hoffman, Gelman, et al. 2014) implemented in julia using
Turing. j1 (Ge, Xu, and Ghahramani 2018).

Rearranging the second moment condition gives:

Sm = IB((S, g) + ZQm,l(kaT/):u(ka 7, X) +
k.n

where ¢,1 is the posterior weight over latent states defined in Appendix D.1. A lower dimensional approx-
imation for u(k,n, X) appears to suffice, with higher dimensional interaction terms seeming to make little
difference to estimates. Approximating the expectation error 7, as normal once again delivers a likelihood for

S conditional on I,y, X. The same methods and priors are used to sample from the posterior distribution.
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