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MAIN PRINCIPLES OF NOTATION

The following principles concern notation common to several chap-
ters. Remaining differences among chapters arise from reprinting or
from the specific aims of individual authors. Some chapters, especially
Chapter X, utilize additional specialized notation, the principles of

which are not stated here.

a, A, ¢, Ly .o
a,a; 0, P. .. ..
g=1,...,Gk=1 . ,K;
t=1,...,T
&, 8 Fo
LE,Q
G
A M,y
PP
D
Mo
A, B, T ...
3

Greek and Latin capitals can be distin-
guished by the fact that al} Greek capitals
are vertical, all Latin capitals italicized.
Known or unknown constants (parameters)
are denoted by Greek characters.
Quantities subject to a probability distri-
bution are denoted by Latin characters.

. Unknown parameters and their estimates

are denoted wherever possible by corre-
sponding Greek and Latin characters.

. Latin characters (lower cage) are also used

az subscripts for numbering of variables,
equations, or observation periods. In such
cases the range of the subscript is often
from 1 to a maximum denoted by the corre-
sponding Latin capital letter.

German letters denote sets. Elements of a
set are usuaily denoted by the correspond-
ing Latin capital. (Chapter 1II is an excep-
tion.)

Used to denote probability density func-
tions.

An operator denoting the operation of tak-
ing a mathematical expectation.

Matrices are denoted by eapital letters,
vectors by lower case letiers. Submatrices
are denoted by the same capitals with af-
fixes; subvectors and scalar elements of
matrices and vectors are denoted by corre-
sponding lower case letters with affixes.
The rank of the matrix P.

Covariance matrices of structural and re-
duced-form disturbances, respectively.
Used with various affixes to denote a matrix
of moments of the observations.

Matrices of coefficients of structural equa-
tions.

Matrix of coefficients of reduced-form equa-
tions. ’

i



xiv MAIN PRINCIPLES OF NOTATION

R

Used frequently with various subseripts to
denote observed variables.

Used with various subscripts to denote dis-
turbances. Frequently u denotes disturb-
ances agsociated with structural equations
and v denotes disturbances associated with
reduced-form equations.

The number of jointly dependent variables
(or of equations) and the number of prede-
termined wvariables, respectively, in the
structure,

Used as affixes to refer respectively to the
dependent variables with unrestrictéd and
zero coefficients and the predetermined vari-
ables with unrestricted and zero coefficients
in & given structural equation.

When used as subscripts these symbols refer
to sets of structural equations,



PREFACE

Econometrics is a branch of economics in which economic theory and
statistical methods are fused in the analysis of numerical and institu-
tional data. The studies assembled in this volume discuss in an exposi-
tory style some problems of statistical method in econometrics.

In the application of statistical methods to economics two broad
problems of economic analysis must be faced. The first is that the scope
for experimentation is limited. Broadly speaking, economic history ean
only be observed as it is lived, uninfluenced for purposes of scientific
inquiry. The second is that analysis must seek to answer questions con-
cerning the effects of specific policies of governments, private firms, or
individuals. From the studies assembled here it appears that, under
these ecircumstances, the application of statistical methods to a given
set of observations must lean heavily on preconceptions as to the nature
and persistence of behavior relationships, i.e., conceptions not derived
from (but possibly in part tested or screened by) the observations
analyzed.

If these preconceptions were to specify all of the variables entering
into each relationship of interest and if all of these variables were ob-
served without error, there would be no need for “statistical’’ inference
in the sense of methods dealing with observations subject to random
variation. In reality, unobserved random variables need to be intro-
duced to represent ‘“‘shoecks’ in behavior relations (i.e., the aggregate
effects on economic decisions of numerous variables that are not sepa-
rately observed) and ‘“‘errors’” of measurement. The choice of assump-
tions as to the distribution of these random variables is further compli-
cated by the fact that the behavior equations in question are offen
aggregated over many firms or individuals. The implications of this
fact have been insufliciently explored so far.

In order to make scientific progress in a complicated situation it may
be useful to proceed stepwise, introducing the varicus complications
successively rather than simultanecusly. ¥or this reason the present
volume 1s concerned largely with ‘“shock models” that neglect errors of
measurement. In this manner we face first certain statistical problems
cannected with the nonexperimental character of economics and arising
from the simultaneous validity of several bebavior relationships. It
should also be mentioned that a number of studies of “error models”
are available {see Chapter VI, footnote 7) and that some work on ‘“‘shock-
error models” has been started (see Chapter VI, footnote 6). To guide
continuing studies, we believe that further fundamental research on the
objectives and strategy of model construction will be needed. In particu-

XV



xvi PREFACE

Iar, the consequences of incorrect specification need to be explored, both
as a general methodological problem and in particular cases. This
volume contains two case studies of specification error (Chapters VIII
and IX),

The present monograph is devoted in part to an exposttion of some of
the problems treated more technically in Cowles Commission Mono-
graph 10, Statistical Inference in Dynamic Economic Models. Some of the
chapters in this category are reprinted journal articles (see Acknowledg-
ments for details). It also contains several new studies representing the
fruits of continuing research, as noted in the following review of the
contents.

Chapter I by Marschak serves as an introduction to the book. It
discusses the relation of economic theory to statistical method in econo-
metrics and illustrates the uses of econometries in deciding policy ques-
tions and in making predictions.

In Chapter IT (reprinted), the concept and the criteria of identifiability
of the parameters of economic behavior—a precondition for their esti-
mation—are discussed by Koopmans. The problem of identifiability
has been discussed in & variety of terminologies by quantitative workers
in economics, psychology, sociology, and other fields. It is presented
here in relation to a simple class of econometric models.

Chapter 111 by Simon throws new light on the concept of a complete
model. This is accomplished with the aid of the notion of a causal order-
ing of variables and of equations. In addition, interesting connections
between these basic ideas and the concept of identifiability are explored.
The argument is put in terms of nonstochastie models and is developed
most fully for the linear case.

Chapter IV by Haavelmo, by now a classic of econometric literature,
illustrates the use and misuse of the least-squares method of estimation
in terms of simple models involving the consumption function. The
derivation of consistent maximum-likelihood estimates is illustrated for
the simple case of systems containing one or two “just identifiable”
equations and one identity.

In Chapter V {(also reprinted) Girshick and Haavelmo present a brief
discussion of maximum-likelihood estimation procedures and apply them
to sets of equations pertaining to the demand for and supply of food. The
portions of the original article that dealt with computational procedures
have been deleted in this reprinting since an entire chapter (X) giving
a detailed exposition of the subjeet of computation of maximum-likeli-
hood estimates has been included in this volume.

Chapter VI by Koopmans and Hood consists of a systematic exposi-
tion of the large-sample theory of maximum-likelthood estimation in one



PREFACE xvii

particular “shock model” specifying linear equations and normally
distributed disturbances. It also discusses tests of (a) the validity of the
restrictions on, and (b) the identifiability of, a structural equation in
this model. While previously published work contained in Monograph 10
and in Anderson and Rubin {1949, 1950] was drawn upon heavily in the
preparation of this chapter, the application of the device of stepwise
maximization of the likelihcod function has been introduced here as a
unifying element in the exposition.

In Chapter VII Rubin and Chernoff show that the methods and results
of Chapter VI may be applied under much more general conditions,
including cases of nonlinear relationships, to give estimates that still
possess certain desirable large-sample properties. Except for brief ab-
stracts, the research underlying this chapter has not been published
previously.

The next two chapters, also new, deal with particular cases of specifi-
cation error. A point made in Chapter VI1 is illustrated in Chapter VII1
by Allen in terms of a simple two-equation model. The problem provides
an example of specification error leading to an underestimate of the
sampling variance of estimates, but not to asymptotically biased estima-
tion.

Chapter IX by J. Bronfenbrenner gives several examples of specifica-
tion error, again in terms of two-equation systems. The type of error
discussed here, arising from incorrect choice of predetermined variables,
results in large-sample bias of estimates.

In the last chapter (X} Chernoff and Divinsky give details of a variety
of computation procedures for obtaining maximum-likelihcod estimates
of simultaneous economic relations. To illustrate the discussion a selec-
tion of worksheets exhibiting the more important steps in each procedure
is reproduced. This chapter is based on considerable experience acquired
after Monograph 10 was published.

An explanation of the main principles of netation common to several
chapters is provided on pages xiii and xiv. Remaining differences in no-
tation are due to reprinting or are motivated by the specific purposes of
individual chapters. A list of referencesis given at the end of the volume,
in which the references given with the reprinted articles are repeated.

Tuae EpiTors
January, 1953
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1. UsEruL KNOWLEDGE

Knowledge is useful if it helps to make the best decisions.

To illustrate useful knowledge we shall take an example from the
century-old elementary economics of the firm and of taxation. Such
examples are admittedly erude (or, if the reader prefers, neat) compared
with the complex actual world since their very purpose is to isolate the
essentials of a problem by “idealizing reality.” Later sections (beginning
with Section 5), will deal with ways of eliminating at least some of the
legitimate realistic objections.

What kinds of knowledge are useful (A) to guide & monopolistic firm
in its choice of the most profitable output level and (B) to guide the
government in its choice of the rate of excise tax on the firm’s product?
Let ¢ represent quantity produced and sold per unit of time; p, price
including tax; 8, tax per unit of product; v, total cost of producing and
selling q units. To fix ideas, suppose that the demand for the product of
the firm is known to be (approximately) a linear function of the price
and that all costs are known to consist of fixed charges. (This is almost
the case with hydroelectric plants.) Write for the demand curve

1 p=a— B B > 0).
The firm’s profit (net revenue) per unit of time is
(2) r=((@-—-086z—n

1
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or, using (1),
3) r=(a—0—8pg—v=—8+(a— g~

Case A: If the firm knows a, 8, and 6, it can use equation (3) to com-
pute the difference between the profits that would be attained at any
two alternative output levels. To choose the most profitable output of
all, it therefore suffices to know a, 8, and 4. It happens in our example,
as in most discussions of classical economics, that the functions involved
are differentiable,’ so that the best output level, say ¢ = §, ean be found
by putting dr/dg = (. Hence

4) § = (a — 8)/28.

Case B: Assume that the government knows that the firm maximizes
its profit. What other knowledge is useful to the government? This de-
pends on its aims:

Case B;: Suppose, first, that the government, which collects from the
firm the tax revenue T,

(5) T = 64,

wants to maximize this revenue by the proper choice of the excise-tax
rate 9. Then, by equations (4) and (5),

©) T = 8(a — 6)/28.

Therefore, if the government knows «, it can compute the ratio between
the tax revenues resulting from fixing any two alternative excise rates.
This ratio is independent of 8. Hence, to make the best decision (i.e.,
to choose the value of ¢ that will bring in the highest tax revenue) it
is sufficient for the government to know «. In fact, the best value of
8isb = a/2.

Case B;: Suppose, on the other hand, that the government wants to
goad the monopolist into maximum production, provided that a fixed
tax revenue T = T* can be collected. The best tax rate is found by solv-
ing the (quadratie) equation (6) for  with 7* substituted for T. The
equation will have two real roots, say 6, and 8 (which, in a limiting case,
may coincide), provided that T™* is not too large. Sinee, by equation (4),
g is larger the smaller 6 is, and since the government was assumed to be

1 Buf, see Section 5.
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interested in high output, it will choose the smaller of the two real roots,
say 6 < #. If T* exceeds a certain level 77, the roots will be not real
(ie., a tax revenue T* > 7| is unattainable). We thus conclude that if
the government knows « and 8 it can choose the best value of @ for any
desired and attainable level T* of tax revenue.

We can sum up as follows:

CasE A: Desired: maximum r. Decision variable: ¢. Useful knowledge:
the form of relations (1) and (2) and the values of the parameters a,
B, 6.

Casg B,. Desired: maximum 7. Decision variable: 8. Useful knowledge: .
the fact that profits are maximized, the form of (1) and (2), and the
value of a.

Casg Bs. Desired: maximum g for given T = T™, Decision variable:
6. Useful knowledge: same as in Case B;, plus the knowledge of 8.

2. STRUCTURE

In all of our examples so far, useful knowledge pertains to certain
economic relations. In Case A the firm has to know something about
relations (1) and (2). Relation (1), the demand equation, describes the
behavior of buyers. The form and the coefficients (a, 8) of this relation
depend on social and psychological facts, such as the frequency distri-
bution of consumers by tastes, family size, income, etc. Relation (2),
the profit equation, registers the institutional fact that the tax rate is
fixed at 8, and the fact (reflecting the technology of the firm as well as
the price and durability of its plant and the interests and rents stipulated
in its contracts) that the total cost consists of given fixed charges, v.
With respect to the decision problem of Case A, relations (1) and (2)
are called structural relations and are said to constitute the siructure;
they involve constants (a, 8, 8, v) called structural parameters. In Case
B the assumed structure includes, in addition to (1) and (2), the as-
sumption of profit maximization, which results in relation (4); and defi-
nition {5) may also be counted as part of the structure. If (1) or (2) or
both had included a definite pattern of change—say, a linear trend—
this would also be a part of the structure.

In each of the problems studied the form of the structural relations
and the values of some (not necessarily all) of their parameters prove to
constitute useful knowledge. However, we shall presently see that under
certain conditions other kinds of knowledge, possibly more easily at-
tained, are sufficient to make the choice of the best decision possible.
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3. MAINTAINED STRUCTURE AND CHANGE OF STRUCTURE

‘We shall show that the knowledge of structure is not necessary if the
structure is not expected to have changed by the time the decision takes
its effect.” Again consider Case A. Assume that the form of the struc-
tural relations (1) and (2) and the values of coefficients «, 8, v are known
to have been unchanged in the past and to continue unchanged in the
future, and make three alternative assumptions about the tax rate 8:

Casg A’: @ has not changed in the past and is not expected to change.

Case A”: 6 has not changed in the past but is expected to change in
a known way.

Casg A'": ¢ has changed in the past.

Suppose that in the firm’s past experience, of which 14 has records, it
had tried out varying levels of output g and obtained varying profits r.
In Case A’ it can tabulate the observations of ¢ and r in the form of a
schedule, or fit an empirical curve, and use the table or the curve to
predict future profit r for any given output ¢. It can therefore choose its
most profitable output without knowing any of the structural parame-
ters a, 8, v, 6.

True, knowledge of the form (not the parameters) of relation (3) may
help in filling the gaps in the empirical schedule (if the observations are
few) by suggesting that a quadratic rather than some other relation be
fitted to the data on r and ¢. Remember that output ¢ was assumed to
be eontrolled by the firm independently of any other variables and to
determine, for given values of the structural parameters (o, 8, v, 6), both
the profit » and the price p. Accordingly, » and p are said to be “jointly
dependent’? on ¢, an ‘‘independent” variable. Independent variables are
also called “exogenous” {“autonomous,” “external’”’}; and the jointly
dependent variables, “endogenous” (“induced,” “internal”’).® There are
as many jointly dependent variables as there are structural relations—
in our case, two. Solving the structural relations (1) and (2) for the two
jointly dependent variables we obtain the “‘reduced form” of the system:
two relations predicting, respectively, p and r from ¢. In our case the
relation predicting p happens to coincide with one of the structural rela-
lations [viz., (1)}. The other equation of the reduced form (viz., the one

2 See Chapter II, Section 8, of this volume and Hurwicz [1950b].
3 A slight change in definition will be convenient later, when dynamic systems
with lagged endogenous variables are introduced. See Section 9.
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predicting r) is a quadratic equation,
(7 r=A 4 pg+ v,

say, whose coefficients are related to the coefficients of the structural
equations as follows:

8 A= -8 u=a—8, v= —v.

If the structural relations (1) and (2) are assumed to retain in the fu-
ture the same (linear) form and the same values of parameters as in the
observed past, the firm can predict r for a given ¢ by fitting a quadratic
equation (7) to past observations on output and profit. It can thus
determine empirically the parameters A, u, v of the reduced form with-
out having to pay any attention to the manner [described by equations
{8)] in which these parameters are related to the demand and cost con-
ditions. In fact, as already mentioned, the firm may display an even
stronger disregard for ‘“theory.” If the number of observations is large
while the firm’s confidence in the linearity of the relations (1) and (2)
and hence in the quadratic nature of (7) is small, it may prefer to rely
altogether on some purely empirical fit.

Case A” is different. Although the same schedule as in Case A" will
describe the past relation between output and profit, this schedule will
not help in choosing the most profitable output under the new tax rate.
If the firm could eonduct z series of experiments under the new tax
rate, varying the outputs and observing the profits, it could discard the
old schedule and construct a new one to be used in decision-making.
But such experiments take time.‘ In our case these experiments are not

¢ Btrictly speaking, if the form of the new schedule is known, one needs only
as many observations as there are unknown parameters of the schedule. Thus,
three observations, and therefore a delay of three accounting periods, will suffice
to determine the new quadratic schedule that replaces (7) when the tax rate is
changed. If the form of the new schedule is not known, the output that results in
maximum profit under the changed schedule can be found by trial and error, the
number of necessary triale depending on the firm’s skill in hitting from the begin-
ning an output level near the optimal one and in varying the cutput level by
amounts not too large and not too small. This skill is equivalent to some approxi-
mate knowledge of the properties of the new schedule—equation (9) of the text—
in the neighborhood of the opiimal point and is therefore enhanced if the firm
has approximately the kind of knowledge to be discuased presently (viz., some
knowledge of old structural relations and of the change they have undergone).

However, the full significance of the delay that occurs when, without knowing
the structure, one estimates empirically a new reduced-form schedule (such as the
relation between the dependent variable r and the independent variable g after
the tax rate # has changed) cannot be gauged by the reader as long as we deal with
the artificial assumption of exact economic relations such as constitute the usual
economic theory. When, beginning with Section 7, random disturbances of rela-
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necessary if the firm knows, in addition to the old observations, the
form of relations (1) and {2) and both the old and the new tax rates,
say 8 and 6*. Then the old schedule will be the reduced-form equation
(7). The firmy obtains the coefficients of (7) empirically from old observa-
tions. It knows them to be related to the structural parameters, by
equations (8). Under the new tax rate 6* the coefficient u will he replaced
by u* = a — ¢* while X and » will not be affected. Hence the new rela-
tion between profits and outputs will be

9 r=AM+ @+ o—6Dg+

The new schedule can thus be obtained by the firm from the old one by
inserting the known tax change in a well-defined way.

We see that, in the case of a foreseen change in structure, the purely
empirical projection of observed past regularities into the future cannot
be used in decision-making. But knowledge of past regularities becomes
useful if supplemented by some knowledge {not necessarily complete
knowledge) of the past structure and of the way it is expected to change.,
In our case we can replace the old, empirically obtained schedule (7)
by the new, not observed schedule (9) if we know (a} the mathematical
form (viz., quadratic) of these schedules and the role played in them
by the tax rate [this knowledge is derived from the knowledge of the
form (not the coefficients) of the structural relations (1} and (2)], and
(b) the amount of change of tax rate, #* — 6. Having thus obtained
(9), and maximizing r, we can determine the best output, ¢ = ¢. In
terms of the tax change and of the coefficients of the old, empirical profit
schedule (8),

§= (0%~ 60— w2

We now come to Case A, in which the tax rate @ was observed to
vary independently in the past, § being similar in this respect to the
output ¢. In this case, both ¢ and @ are exogenous variables, while , 8,
v are, a8 before, structural parameters and r is endogenous. From past
observations on g, 9, and r, the firm can derive a double-entry table
or fit an empirical surface to predict the profit r for any specified output
g and tax rate 8. Asin Case A’, it is not necessary to know the structural
parameters, although knowledge of the form of the structural relations
helps to interpolate gaps in the empirical table. Specifically, profit r is

tions and errors in the measurement of variables are introduced, the time-
saving aspect of the knowledge of structural relations will appear in a more realis-
tic light. See Section 8.
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Telated to g and 8 by an equation of the form

(10) = —8g+ A"+ 7g+
whose parameters are related to the structural parameters as follows:
(11) A=8 T = a, ¥o= =,

If the firm has confidence in the form of the structural equations (1) and
(2), it will be helped by the knowledge that equation (10) involves a
produet term (~-8¢) in the two exogenous variables and a term (A¢")
quadratic in ¢. Thus, Case A’ is analogous to A’ except that the re-
duced form now involves two exogenous variables (g, 9) instead of one
(@)

Suppose, however, that a change in the social and psychological con-
ditions is expected to change the demand equation (1). Suppose, for
exarmple, that the slope of the demand curve, which had maintained a
constant value 8 during the past observations, is expected to obtain a
new value, 8*, while the tax rate # and the output ¢ had both under-
gone observed variations during the observation period. With the de-
mand curve thus changed, the coefficient A in equations (10) and (11)
will be replaced by A* = X -+ (8 — 8%). Therefore, the old reduced-form
equation (10) cannot be used to predict profits r from given values of
tax rate ¢ and output ¢ and to decide upon the best output level § un-
less one knows, in addition, the amount by which the demand param-
eter 8 is going to change. This case is analogous to Case A”, with g now
playing the role that was played in Case A” by 4, while ¢ and 8 play
the role previously played by ¢ alone.

To sum up: (a) for purposes of decision-making it is always necessary
to know past and future values of all exogenous variables (i.e., of vari- -
ables that determine the outcome in question and that were chserved -
to change in the past); (b} if conditions that have not changed in the
past are expected to change in the future, some knowledge of such con-
ditions {called “structure”) and of the nature of their change is necessary
for decision-making.

The choice of the best decision presupposes that two or more alterna-
tive future values are tentatively assigned to a decision variable. If the
decision variable has varied in the past, it is called an exogenous variable;
if it has not, it is usually called & structural parameter, In Cases A’,
A”, and A", g, an exogenous variable, was such a decision variable. In
Case B of Section 1 the tax rate § was a decision variable, the govern-
ment being the decision-maker. If 8 has varied in the past, and is thus
an exogenous variable, the government has to know these variations in
order to choose the best decision on the basis of past relations between
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6 and the quantity that it tries to maximize. If § has not varied in the
past (for example, if # was zero) and the government now tries to fix it
at its best value, a structural change is planned. To determine the effect
of such a change the government has to know something about the past
structure. This knowledge may require more than the knowledge of the
past tax rate itself. For example, it is seen from equation (6) that if the
tax is to be introduced for the first time, the choice of the tax rate that
will maximize the tax revenue will require knowledge of @, a parameter
of the demand equation.

4. CoNTROLLED ANKD UNCONTROLLED CHANGES

We have noted that a decision variable can be either a structural
parameter or an exogenous variable. Structural parameters and exoge-
nous variables that are decision variables can be called “controlled”
variables, as distinet from “uncontrolled” wvariables (both exogenous
and endogenous) and parameters. For example, the legally fixed quan-
tity @ is uncontrolled from the point of view of the firm, though con-
trolied from the point of view of the government. The psychological and
social factors determining « and 8 and the technological and economic
factors determining v were here considered uncontrolled, though a dif-

_ ferent hypothesis (e.g., involving the effects of an advertising campaign
designed to change buyers' tastes) might have been discussed instead.

In predicting the effect of its decisions (policies) the government thus
has to take account of exogenous variables, whether controlled by it
{the decisions themselves, if they are exogenous variables) or uncontrolled
(e.g., weather), and of structural changes, whether controlled by it (the
decisions themselves, if they change the structure) or uncontrolled (e.g.,
sudden changes in people’s attitudes, in technology, etc.). An analogous
statement would apply to the firm except that, for it, government deci-
sions belong to the category of uncontrolled variables.

5. SomME DEFINITIONS EXTENDED

We shall now proceed, as promised in Section 1, to generalize our
examples to meet realistic objections. One such objection is that in prae-
tice the decision is frequently qualitative, not gquantitative. For ex-
ample, the firm may have to decide in which of a limited number of
eligible locations—each of them near a fuel source, say—it should build
a plant; the government has to decide whether to abolish or continue
- rent control; ete. Such cases look superficially different from Cases A
and B:, treated in Section 1, where the decision-maker had to choose
among a large (possibly infinite) number of values of a (possibly con-
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tinuous) variable. Note, however, that in Case By the choice had to be
made between only two values (6; and ;). In every case the decision-
maker compares the outcome of alternative decisions, and these may or
may not form a continuous set. It is obviously not essential whether the
alternatives are identified as quantities (as in the examples of the pre-
vious sections), or by city names (as in the case of location choice), or
by the words ‘“‘yes” or “no” (as in the choice between maintaining and
abolishing rent control). In every case the choice goes to the decision
that promises the best outcome.

The extension applies, in fact, to all the variables (including the struc-
tural parameters), which we had previously introduced as continuous
quantities. It has been claimed, for example, that in the interwar period
businessmen’s willingness to invest in plant and equipment depended,
other things being equal, on whether the national administration hap-
pened to be Democratic or Republican. Should an economist take this
hypothesis seriously, there is nothing against his regarding the party
label of the administration as a two-valued variable and {rying to ex-
plain certain ‘‘shifts” in the investment schedule as a function of that
variable.

Similarly, fluctuations in the supply of a commodity aceording to the
four seasons of the year can be conveniently treated by introducing into
the supply schedule a four-valued exogenous variable called season.
This is a more rational approach than the usual mechanical “seasonal
adjustment’” of individual time series, which does not use available
knowledge as to which particular structural relations (such as the tech-
nological supply schedule for erops or buildings or the demand schedule
for winter clothes) are affected by seasons.

Finally, consider a structural change that (unlike the changes dis-
cussed in previous sections) consists, not in changing a certain continu-
ous parameter, such as the coefficient « of the demand equation (1),
but in scrapping one equation and replacing it by another. Let the two
equations be, respectively, F = 0 and F* = 0, where F and F* are func-
tions involving, in general, several endogenous and exogenous variables
and certain parameters. Form the equation §F + (1 — 8)F* = (, where
§ is a new structural parameter with the following values: & = 1 before
the change, 3 = 0 afterwards. Then structural change is expressed by a
change in the value of &.°

These examples show that our previous description of structures and
decisions in terms of variables (including parameters) is general enough

s For example, the introduction of price contrel, which will be discussed in
Section 6, consists in serapping the equation ¢¢ — ¢ = 0 in (13) and replacing it
by the equation p — § = 0.
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if the concepts are properly interpreted. The corresponding generaliza-
tion of mathematical operations involved is, in principle, feasible.

Some readers may find it more convenient to give the set of exogenous
variables and structural parameters a more general name: “conditions.”
Similarly, the set of jointly dependent variables can be renamed ‘“‘re-
sult.” Conditions that undergo changes during the period of observation
correspond to ‘‘exogenous variables.” Conditions that remain constant
throughout the observation period but may or may not change in the
future constitute the “structure.” Conditions that can be controlled
are called “decisions.” Given the conditions, the result is determined.
The decision-maker ranks the various achievable results according to
his preferences: some results are more desirable than others. The best
decision consists in fixing controlled conditions so as to obtain the most
desirable of all results consistent with given noncontrolled conditions.

For the economy as a whole, endogenous variables can be roughly
identified with what are often called “economic variables.” These are
usually the quantities (stocks or flows) and prices of goods and services,
or their aggregates and averages, such as national income, total invest-
ment, price level, wage level, and so on. The exogenous variables and
the structural parameters are, roughly, “noneconomic variables” (also
called “data” in the economic literature) and may include the weather
and technological, psychological, and sociological conditions as well as
legal rules and political decisions. But the boundary is movable. Should
political science ever succeed in explaining political situations (and hence
legislation itself) by economic causes, institutional variables like tax
rates would have to be counted as endogenous.®

6. THE TECHNICIAN AND THE PoLicy-MAKER

Gutcomes of alternative decisions are ranked according to their de-
sirability by the policy-maker, not by the technician.

Returning to Case B of Section 1, suppose, for example, that the gov-
ernment desires both a high tax revenue and a high level of production
of the taxed commodity. The endogenous variable that is being maxi-
mized is thus neither the tax revenue (as in Case B,) nor the output (as
in Case B,) but a function of the two; for example, this function may be

(12) U=T+ wj,

where w, a positive number, indicates the “weight” attached to the pro-
duction aim relative to the aim of collecting revenue. The statement that
the government maximizes U is s special case of the statement, made in

¢ See Koopmans [1950¢}.
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Section 5, that the government ranks the possible results—here the
possible pairs of values of 7" and §-—according to its preferences. We
find that the best value of 8, in this sense, is § = (a — w)/2.

We can imagine a division of labor between the government (or some
other decision-maker) and the technician. The latter is relieved of the
responsibility of knowing the ‘“utility function” such as (12). The tech-
pician is merely asked to evaluate the effects of alternative decisions
(tax rates 6) separately upon ¢ and T, as in equations (4) and (5).
Clearly, knowledge of the structural coeflicients a, g is useful for this
purpose. This knowledge is even necessary if the tax is introduced for
the first time (or if «, 8, 8 had all been constant throughout the observed
past). The technician will thus try to estimate « and 8. The decision-
maker, on the other hand, need not formulate his own utility funetion—
U(T, §), say—completely and in advance. It suffices for him to make
the choice only between the particular pairs of values of (7', ) that the
technician tells him will result from setting the tax at various considered
levels.

An additional example will illustrate this role of the technician as
separated from the decision-maker. The government {or the legislator)
considers the possibility of guaranteeing some fixed price for a farm
product. The technician is asked how many bushels will have to be
purchased for storage at public expense at any given guaranteed price.
Suppose that the technician knows the supply and demand functions
which have so far determined the price in a free market:

¢ = o + 8'p,
(13) ¢ =o' — &,
¢ —-¢ =09,

where ¢ is the quantity supplied and ¢” is the quantity demanded by
private people, and where p is the (varying) price at which demand and
supply were equalized in previous years. Under the intended legislation
this system would be replaced by

q' "——'a“l‘ﬁ’ﬁ:
(14) ¢ =o' — 5,
¢ -4¢ =g

where ¢* and ¢ are, as before, the supply and demand of private people,
and where g is the amount to be purchased by the government when the
price is fixed at F. Hence

(15) g=(a — o)+ @ + 8.
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If the technician can estimate the parameters (o', §', o°, 8%) of the supply
and demand equations, he can tell what alternative pairs of values of
g and p are available for the policy-maker’s choice. We can say that the
Iafter maximizes some utility function U(g, 5) over the set of those
avallable pairs of values. But thls function is of no concern to the tech-
npician,’

7. RanpoM SHOCkS aND ERRORS

Exact structural relations such as equations (1) and (2) are admittedly
unrealistic. Even if, in describing the behavior of buyers, we had included,
in addition to the price and to the quantity demanded, a few more vari-
ables deemed relevant (such as the national income, the prices of
substitutes, ete.), an unexplained residual! would remain. It is called “dis-

I turbance,” or “shock,” and can be regarded as the joint effect of numer-
ous separately insignificant variables that we are unable or unwilling
‘to specify but presume to be independent of observable exogenous vari-

+ ables. Similarly, numerous separately insignificant variables add up to

- produce errors in the measurement of each ohservable variable (observa-
tion errors). Shocks and errors can be regarded as random variables.
That is, certain sizes of shocks and observation errors are more probable
than others. Their joint probability distribution (i.e., the schedule or
formuls giving the probability of a joint occurrence of given sizes of
shocks and errors) may be regarded as another characteristic of a given
ecopomic structure, along with the structural relations and parameters
we have treated so far.

If at least some of the variables are subject to observation errors it
is impossible to predict exactly what the observed value of each of the
endogenous variables will be when the observed values of exogenous
variables, together with the structure, are given. But it is possible to
make & prediction in the form of a probability statement. The probabil-
ity that the observation on a certain endogenous variable will take a
certain value, or will fall within a certain range of values, can be stated,
provided that the probability distribution of cbservation errovs of the
variables is known. Similarly, no exact predictions, but, in general, only
probability statements, can be made if at least one of the structural
relations is subject to random disturbances (shocks), even if all observa-
tions are exact. Few economic observations are free of errors; few eco-
nomic relations are free of shocks. The quantities that we want to pre-

? In the above case of *‘protecting the farm income,” g is nonpegative and
P is chosen to be at least equal to the price p that satisfies equations (13) of the
free market. Equations (13) and (14) can also describe the introduction of rent
control, with § < p and with government-financed housing being denoted by —g.
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diet (viz., the endogenous variables) are therefore random variables.
Prediction consists in stating the probability distribution of these vari-
ables.’

As an example, replace the supply and the demand equations in (13)
and (14) by equations involving shocks (random ‘‘shifts,” in the econo-
mist’s language) 4’ and u* but not errors of observation. In particular,
equations (14) become

¢ =do + 879+,
(16 ¢ =o' - 8P+ u,
¢ —d¢ =g
accordingly, equation (15) must be replaced by
a7 g=1(—a)+ 6+ + & — )

Suppose that the shocks are known to have the following joint distribu-
tion (as already remarked, it must be independent of the observable
exogenous variables; that is, in our case, independent of #):

the probability that «’ land«® = 1is3/6,
(18) the probability that 1and &* = —5is 1/6,
the probability that »* = —2 and «* = 15 2/6.

il

Then (¥’ — ) is distributed as follows:
(«' — u®) = O with probability 3/6,
(19) (' — u®) = 6 with probahbility 1/6,
(' — «*) = —3 with probability 2/6.

That is, to predict the amount g which the government will have to
purchase if it fixes the price at 7, the technician will use the same func-
tion of 7 as in equation (15), plus a random quantity which takes values
0, 6, or —3, with respective probabilities 3/6, 1/6, 2/6. Our example
shows how, given the values of exogenous variables (P in our case) and
given the structure [which now includes the probability distribution of
shocks ', «* along with the structural relations (16) and their param-
eters], the technician can state the probability distribution of each en-
dogenous variable (g in our case). He can state with what probability
each endogenous variable will take any specified value, or a value that
will belong to any specified set of numbers or any specified interval.

* See Hurwiez [1950b] and Haavelmo [1944, Chapter VII.
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Instead of a discrete probability distribution of «® and u', such as
(18}, we might have assumed a continuous probability distribution.
For example, let «° and " be jointly normally distributed, with zero
means, with a correlation coefficient p = 0.6, and with respective stand-
.ard deviations a; = 3 and ¢. = 5 crop units. Then the term %' — o
in (17) has a normal distribution with zero mean and with variance
equal to o5 + o° — 2poss, = 16 and standard deviation equal
to 4/16 = 4. Hence the odds are approximately 1:2 that the necessary
government purchase ¢ will have to exceed or fall short of the value
given in (15) by more than 4 units.’ The values of o', o, 8", 8%, 0. , a4,
p constitute the structure, assuming that the structural equations
(16) are linear and that the distribution of %’ and u® is normal. The
knowledge of the structure permits the prediction of the endogenous
variable g, given the exogenous variable 3.

Such is the nature of statistical prediction. It is perhaps not too well
understood in parts of economic literature. Too often economic theory
is formulated in terms of exact relations {similar to alleged laws of natural
science), with the frustrating consequence that it is always contradicted
by facts. If the numerous causes that cannot be accounted for separately
are appropriately accounted for in their joint effect as random dis-
turbances or as measurement errors, statistical prediction in a well-
defined sense becomes possible.

This is not to say that the interval within which a variable is predicted
to fall with a given probability may not be large. If it is so large that
widely differing policies appear to yield equally desirable results, the
prediction becomes useless as a means of choosing the best decision.
However, provided the technician has used the best available data and
the most plausible assumptions, he cannot be blamed for the disturb-
ances inherent in complex processes such as human behavior, weather,
crops, new inventions, and for the errors that have occurred in measuring
their manifestations. It is quite possible that some of the structural rela-
tions of our economy are, by their very nature, subject to strong random
fluctuations. Should it be true, for example, that the investment deci-
sions of entrepreneurs are essentially made in imitation of the decisions
of a very few leaders who, in turn, are affected by conditions of their
personal lives as much as by economic considerations, then the predic-
tion of aggregate investment could be made only within a very large
prediction interval, unless one is content with assigning a very small
probability to the success of the prediction. This fact would merely be a

* When the sample is small, this calculation must be modified somewhat to
account for errors of estimation in o4, o,, p. We disregard this here as technical
and irrelevant to our discussion.
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consequence of a certain structural characteristic of the economy, and
the technician would merely have recorded it faithfuily.

Note that any funetion of endogenous variables, and therefore also :
the utility of a given policy {such as U in equation (12)}, now becomes
a random variable. Its distribution depends on the structural relations,
on the distribution of disturbances and errors, and on the values of
exogenous variables, the structural relations and exogenous variables
‘hieing partly controlled by the policy-maker himself. He will prefer cer-:
iain probability distributions of utility to others and will choose the
best decision accordingly. In particular, he ean choose that decision which
maximizes the long-run average (the mathematical expectation) of util-
ity. This may result in his preferring policies with a narrow range of
possible outecomes to policies with a wide range of possible outcomes;
that is, he may “play for safety.”

8. THE NEED For STRUCTURAL ESTIMATION

The results of Section 3 extend themselves with added force to the
now generalized probabilistic (stochastic, statistical) concept of economic
structure. The determination of relevant unknowns will now be calied
“estimation.””™ Generalizing the example used in Section 3, replace the
demand and profit equations (1) and (2) and the resulting reduced-form
equation (7) by, respectively,

(1) p=o—B+u
@) r=(p—8q—7x+o,
0! r =+ ug+ v+ w,

where u, v, w are random shocks and where, corresponding to equations
(8) of Section 3,

8) »= -8, p=a—80 v = —y, w = ug + v

The shock variables u, v represent, respectively, random shifts in
demand behavior and in the total eost and are independent of exogenous
variables such as g and 8. As an example, % and v may depend partly on
random fluctuations of the general price level (so that w and v are cor-
related) and partly on numerous other causes specific to the demand or
to the cost formation. Let %, v be normally distributed with zero means,
and call their variances o, and ¢ and their correlation coefficient p.
Then w, the random term in the reduced-form equation (7'), will be, by
(8'}, normally distributed with zerc mean and with varianee

(20} oe = ¢'ow + oz + 2gpuuo,.
¥ See Chapters VI and VII.
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Suppose, as before, that a certain change in the structure (viz., a
known change in the tax rate #) is expected by the firm. Tt has o choose
the best new level for its output. This may be defined as the output level
that yields, under the new tax rate, the highest mathematical expecta-
tion of the profit (or, more generally, the highest mathematical expecta-
tion of some utility function of profit, possibly giving different weights
to a dollar lost and a doliar gained). To find the best new output level
we need to know, as in Section 3, the relation that will correspond to
(7'} under the new structure. (This knowledge will now have to include
the distribution of w in addition to some of the coefficients A, g, ».) The
case for estimating the old structure and inserting its known change,
and against relying upon experiments to be made under the new struc-
ture, is now even stronger than it was in Section 3, where all relations
were assumed to be exact." Even though we have assumed that the firm
knows the (quadratic) form of equation (7) and that it knows the (nor-
mal} form of the distribution of w for given ¢, it will not suffice now to
have just as many observations under the new structure as there are
unknown parameters of the reduced form. To achieve a degree of preci-
sion necessary for practical action one may need a large number of obser-
vations on g and r under the new structure. This number is larger, the
larger ¢, . Therefore, by (20), the larger the quantities a. , o, , p, and
g are, the more observations are needed. The required delay would im-
pede the making of deeisions. On the other hand, the old structure (the
old tax rate) may have prevailed during a long enough period to make
possible a sufficiently precise estimation of the old structural equations
(1} and (2) (i.e., of their coefficients and of the distribution of param-
eters oy , o, , p) from data on r, p, and q. Hence A, & (under the old as
well as the new value of 8), and v can be estimated, by (8"), and the
standard deviation for any given ¢ can be estimated, by (20)."

It is not claimed, to be sure, that the available data for the past al-
ways provide a large enough sample to estimate the old structure with
precision that is sufficient for practical deeision. In fact, it will be re-
membered from the previous section that the random disturbances of
some economic relationships may well be so large as to make even the
full knowledge of the old structure (including the knowledge of the
distribution of those disturbances) useless for practical decisions. In this
case even an infinitely large sample wouid be useless. All that is claimed
in the present section is this: Whenever a given change in structure is
expected or intended, the attempt to predict the outcome of alternative

1t Bee footnote 4.
* For some other aspects of experiments vs, nonexperimental observations,
see Marschak [1947a, p. 202 ff.].
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decisions under the new structure without taking into account experi-
ence collected under the old structure is either so lacking in precision -
or so wasteful of time as to be useless. It is more promising, though not

always practicable, to base the choice of best policy upon an estimate of

the old structure and on the knowledge of its expected or intended

change.

9. Tae Time Pate or EconoMic VaRIaBLEs; DYNAMIC .STRUCTURES

We are usually interested in predicting the values of economic vari-
ables, not only for a single point or interval of time, but for a whole suc-
cesssion of such points or intervals. We are interested in the path of the
variable through time. As often pointed out by economists, the properties
of the path (for example, the intensity of the oscillations of, or the rate
of growth in, income) are of direct concern to the individual or the nation.

Suppose that the exogenous variables and/or the structure will undergo
specified changes during the future period in question, and disregard for
a moment any disturbances and errors. Then the value of each endoge-
nous variable, being at any time exactly determined by exogenous vari-
ables, will change throughout the period in the manner prescribed by the
relevant equation of the reduced form, such as equation (7) or (15).

Now introduce disturbances, such as » and v in (1') and (2'), or o'
and 2° in (16), and®errors of measurement. Assume either that their
probability distribution, which can be regarded as a characteristic of the
structure, is unchanged throughout the period or that it will undergo
specified changes. Then the relevant equation of the reduced form will
also involve random fluctuations, as exemplified in (7') or in (17). Thus,
for each future point of time it will be possible to make a statistical pre-
diction as discussed in Section 7.

So far we have discussed changes in the exogenous variables or in the
structure and the presence of random disturbances and errors as the
only explanations of the change of economic variables over time. If
this were true, no economic trends or oscillations of endogenous economic
variables would be generated except by trends and oscillations in specifi-
able exogenous variables (such as climate, population, technology, do-
mestic political balance, the state of foreign economies, armaments,
wars, demobilizations) or else by random variations of the joint effect
of numerous other external forces for which we are unable to account
separately. Accordingly, in the examples studied so far, all observed
values of endogenous variables would remain constant if the exogenous
variables and the structure did not change and if disturbances and errors
were not present. All paths would be straight lines parallel to the time
axis.
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Many economists have been dissatisfied with this picture of economic
changes. Many if not most business cyele theories imply that economic
fluctuations would take place even if external conditions remained con-
stant and no random shocks existed.

This is consistent with the observation, neglected in all of our previous
examples, that relations describing human behavior, technology, or legal
rules must often involve not only a set of contemporary variables but

- also their rates of change (time derivatives, or differences between suc-
cessive values of a variable) or their cumulated values (integrals or sums
over time). For example, net investment may be related to the rate of
change in annual consumption and also to the existing eapacity (e,
to the cumulated past net investment). To give another example, build-
ing construction lags behind building plans, and both may play a role in
a system of structural relations. Even supposing that the exogenous
variables and the structure are constant and that random disturbances
are absent, such a system would generate variations of endogenous vari-
ables through time. The paths of these variables will depend on their
initial values and in general will not be paraliel 1o the time axis, except
possibly for a particular set of initial values (called “equilibrium values’)
which, if attained, are maintained. We call a structure that would ad-
mit variations of observed endogenous variables, even if exogenous vari-
ables did remain constant and if there existed no random disturbances,
s “dynamic structure.”

As an example, we may modify the market system (13) into the
“eobweb” case familiar o economists and often used to iilustrate the
so-called “period analysis” of business cycles.”” Suppose that the sup-
pliers of grain determine output in response to the price that prevails
one year before the harvest, and suppose that the demanders get the
price at which they are willing to absorb the whole (perishable) crop
immediately after harvest. Thus, transactions take place only once a
year, and the prices and quantities obey the following relations:

(21) ¢: = a' + fp:my (behavior of suppliers),
(22) pe = o + B (behavior of demanders),

where the subscript indicates time, Let &’ = 0,8 = 2,0 = 1, 8% = —},
and suppose that the initial crop ¢ = 1. By previous definitions (Sec-
tion 3), these five quantities can be regarded as structural parameters
or, equally well, as exogenous variables that happen to remain constant
during the whole period in question. The two endogenous variables,
pe and ¢, , will trace certain paths, or time schedules, that we can obtain

# See Leontief [1934], Lundberg [1937], and Samuelson [1947, Chapter XI).
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ay follows. By equation (22), pp = 1 — %go = §. Then, by (21), ¢, =
2po = §;by (22), p1 = 1 — 4qu = §; by (21), @ = 2p, = §; and so on.
In our numerical case ¢, and p, happen to oscillate around ¢ and 2,
respectively, approaching these constants as time goes on (“damped
oscillations™):

i 0 1 2 3 cos m—d o
(23) a 1 48/32 40/32 41/32 ... — 473
e 24/32 20/32 22/32 21/32 ... - 2/3.

(Note that if, at some time ¢t = T, the price and quantity were to be
artificially set at £ and %, respectively, then the demand equation (22)
would be satisfied. Also, by putting ¢ = 7, T 4+ 1, --- in (21) and
(22}, we see that ¢r = ¢r41 = @rye = -+, &80d Pr = Prgg = Pryz =
+++ , That is, the values % and %, if attained, are maintained. They are
the equilibrium price and quantity.)

The time schedule (23) expresses each endogenous variable as a func-
tion of time, a discrete function in our case. We have been able to pre-
dict the values of endogenous variables at each point of time from their
values in the preceding point of time, using the fact that in equation
(21) an endogenous variahle was related to the lagged value of another
endogenous variable. Another method for obtaining the time schedule
(23} is to tr#hsform (21) and (22) into equations expressing each endoge-
nous variable in terms of its own previous value, predicting ¢; from ¢ ,
gz from ¢, , ete. These equations are

(24) g =8+ e,
(25) Pi =7+ €pea,

where ¢ = g%8", v = a® + 8%, § = o’ + #'a’. Note, moreover, that if
we replace ¢ by { — 1, equation (24) becomes gy = 8 + eg:.» . Hence,
substituting into the original (24), we have ¢ = &(1 + ¢ + €qie;
and, by repeating the procedure, ¢; = (1 + ¢ + €) + ¢'q., and, in
general,

(26) ge=31l+e+ -+ F g =12 )

Thus, the current value of an endogenous variable can be predicted
from any of its preceding values. In more general cases it can be pre-
dicted from combinations of these values. The form (24), (25) into which
we have put the dynamic structural system (21), (22) exemplifies a set
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of “final equations,” in Tinbergen’s terminology. Each final equation
is a difference equation (or, in other cases, a differential, or possibly a
mixed difference-differential-integral equation), possibly of high order,
in & single variable, with a corresponding time schedule or path, such
as those in (23), as its solution.

As still another, and the most direct, way to obtain the time schedule
(23), we can express g; (or p,) in a form® involving only the initial values
of the endogenous variables. In (26), put n = #: :
1 - ¢
1 —c¢
Using (27), ¢. is predicted from the following quantities, considered as
given: the structural parameters, which determine 8, ¢; the initial value
@ ; and time."* In fact, (27) is the equation of the time schedule for g,
in (23); it is the solution of the “final equation” (24). Equation (27),
together with the analogous one for price p,, corresponds to the re-
duced form previously defined for static systems, since equation (27),
like (7) or (13), relates an endogenous (or jointly dependent) variable
to the independent quantities only. However, we have already mentioned
other forms that can be used in a dynamic system to predict the future
value of an endogenous variable. As the reader will remember, those
other forms included as given the lagged values of the endogencus vari-
able to be predicted or of other endogenous variables.

We can now readmit changes of exogenous variables in our example.
Suppose that the intercept o of the demand curve is not a constant but
a variable depending on the size of the population, and therefore deter-
mined outside of our system (21), (22). Suppose that o takes successive

+ e‘qo .

@n g =48~

values af , ai , - - -. The demand equation (22) is replaced by

(28) P = a‘:-l-ﬁdq:.

The “final equations” change accordingly; (24) becomes

(29) gt = 8 + equ,

where 8, = a' + Sl . The reduced-form equation (27) becomes
(30) =6+ St -+ €70+ g

It is now, of course, impossible to predict the endogenous variable g
from the constants (¢ and g,) only; one has to take account also of all

14 Also called the “‘separated form” Marschak, 1950, Sections 2.4.5 and 2.5.3].

15 Also called the “resolved form' [Marschak, 1950, Sections 2.4.5 and 2.5.3].

1 The equilibrium values are obtained, for —1 < ¢ < 0, by putting { = « Thus,
in our numerieal case (e = §%-8* = —}, § = 2}, we obtain g, = #, which confirms
(23). If ¢ = ~1, the oscillation has constant amplitude; if ¢« < —1, the oscillation
is ““explosive.” If ¢ > 0, the path is nonoscillatory but converges to a constant if
¢ < 1. Thus, equilibrium values for g exist only if [¢/ < 1.
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the past values of the exogenous variables (3 and therefore o) if one
uses the reduced-form equation (30). Alternatively, one can take into
nccount only some of those past values but must then employ as addi-
tional predictors the past values of the predicted endogenous variable
[as in (29)] or of other endogenous variables [as in (28) when combined
with (21)]. i

Changes in exogenous variables will, of course, affect the time schedules
of the endogenous variables. This fact is generally recognized in the case
of annual seasons. But it is not always recognized with sufficient clarity
by those who try to discover longer wave-like (so-called cyclical) regu-
larities of the paths of economic variables without first eliminating the
cfects of noneconomic variables,'” or try to predict future waves from
the past ones without regard for possible changes in the noneconomic
conditions.

Let us now replace observable exogenous influences by nonobservable
random disturbances. Modify our example (21), (22) by letting the
supply equation undergo random shifts. That is, replace o in (21) by
&' -+ u', where «" is a noncbservable random variable which we shall,
to begin with, assume to have an unchanging probability distribution.
For example, i may measure the effect of weather on crops in the year¢,
and we assume that weather in one year is independent of that in any
of the preceding years but has the same probability distribution; this
is a situation similar to that in which lots are drawn from a sequence of
urns, lots of a given kind being present in each urn in the same pro-
portion. To fix ideas, let this distribution be normal, with zero mean
and variance o, The distribution is now a part of the structure, which
is described, in addition, by the following equations, with fixed values
attached to each parameter dencted by a Greek letter and also to the
initial values g, po:

(31) qg:
(32) e = o® + 8 (behavior of demanders).

o + B°piy + ui (behavior of suppliers),

i

The “final equations” (difference equations in single endogenous vari-
ables) (24) and (25) now become “‘stochastic” (i.e., involve random
variables). In particular, equation (24) is replaced by

(33) Tt = 5+ €Fe—1 + u:.

Each successive value of ¢ is a random variable whose distribution de-
pends on the value actually taken by ¢ at the preceding point (or, gen-
erally, points) of time. The path of ¢ (and also of p}, instead of being a

I Bee Marachak [1949).
1 This is the “separated form™ of footnote 14.
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sequence of constants as in (23), has become a “stochastic process.”
The equation of the path [viz., the reduced-form equation (27)] now
becomes a “stochastic equation.” The reader will easily obtain, by the
same recurrent procedures as before,

1 _ 4
(34) q,=5-1_:+e‘qo+wg,
where
(35) We = ul + ewis + - -+ .
Since u1, uz, --- all have zero means, so has, by (35), w., the random
component of ¢,. Since uy, uz, - - - were assumed independent, the vari-

ance of w, (and therefore of q,) is the sum of the variances of u}, ew;, -
... and is therefore equal to

(36) oo, = au(l — &)/ — &)

As ¢ increases, this variance approaches a constant, provided that the
absolute value of ¢ is smaller than one. (In our numerical example, ¢ =
—1 and %, approaches %% .) But ¢, itself does not approach any equi-
librium value. In this and other respects the path actually deseribed by
each endogenous variable will differ from the path (23) generated by the
corresponding nonstochastic structure {21), (22). In fact, a stochastic
structure may generate explosive oscillations even though the corre-
sponding nonstochastic structure [such as (21), (22), with 8'8° = ¢ = 1]
produces oscillations with a constant amplitude.”

However, the prediction procedure is similar to that of the nonsto-
chastic case if the concept of prediction is appropriately modified (as
in Section 7) in the sense of stating the probability that, at a given time,
the endogenous variable In question will fall within a given interval.
Analogously to the nonsicchastie case, predictions ean be made either
from the structural quantities only [as in {34) and (36), where the pre-
dictors are 8, ¢, qo, and o%]; or from the past values of the endogenous
variable that is being predicted [as in (33)]; or, more generally, from the
past values of all endogenous variables.

If we now reintroduce changes in exogenous variables (such as o’in a
previous example), these will have to enter the equations used for pre-
diction. In fact, under the conditions stated so far, the past values of
endogenous variables play the same role as exogenous variables in that
they are independent of present random shocks. In this case both the
exogenous and the lagged endogenous variables determine the current
values of the endogenous variables but are independent of them. They

¥ See Frisch [1933a] and Hurwicz [1945].
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wre, accordingly, called “predetermined,” while the current endogenous
variables are called “jointly dependent.””

This similarity between exogenous and lagged endogenous variables
ceases to exist, however, if we drop our assumption that successive ran- -
dom shocks (the random supply shifts u; , ui, . . . due to weather in our
example) are independent. If, for example, we consider not annual but
daily weather records, the independence of successive shocks may have
to be ruled out. Instead, these shocks uj , u; , . . . themselves may con-
stitute a stochastic process, each shock depending on one or more of its
predecessors. Since the lagged endogenous variable g,_; depends on the
shock %7, and this is correlated with w}, g, is not independent of
u; . Therefore ¢,_, is not predetermined. It is determined, jointly with
Gy -, Qe2,qs,Qesa,- - -, by the exogenous variables, the coefficients of
the structural equations [such as (31) and (32)}, and the joint distribu-
tion of successive shocks entering all of the structural equations.” When-
ever we use weekly or even quarterly instead of annual time series, we
must be wary of predictions that use lagged endogenous variables as
though they were exogenous.

The conclusions of the previous sections can now be generalized 1o
the case of structures that are both stochastic and dynamic. Policy con-
sists in changing those elements of the structure and those exogenous
variables that are under the policy-maker’s control. Given the values
-of the uncontrollable features of the structure and of the uncontrollable
exogenous variables, the technician’s task is to predict which stochastic
processes will be generated by the various proposed policies. The vari-
ables that are thus predicted are the potentially observable (and hence
possibly erroneous, because of measurement errors) values of some eco-
nomic quantities of interest to the policy-maker. To make his best de-
cision, the policy-maker ranks these alternative outcomes according to
his preferences. For example, his objectives may include high income
averaged over time, but also small intensity of variations in time, and,
in addition, a high degree of predictability (small prediction intervals
for a given probability level}. These objectives may conflict, so he will
rank the various combinations of average income, stability, predicta-
bility, etc. [for example, by aseribing to them weights analogous to 1 and
win (12)].

Asin the cases treated earlier, knowledge of past structure is necessary
if the polities under consideration and the expected changes of uncon-

* Compare footnote 3. See Koopmans [1950¢, Table, p. 406].

2 In our example this joint distribution involves only uy, «++ , u}, ++- . The
properties of this distribution, such as, for example, the (“‘serial’’) correlation
coefficient between successive pairs u;_,, u; , must be considered part of the strue-
ture.
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trolled conditions involve not only changes in exogenous variables but
also changes in the structure itself.

10. “SreeriNé WHEEL” AND AUTOMATISMS

To the extent to which economic fluctuations are regarded as an evil,
policies can be suggested that will dampen such Huctuations. Through
an appropriate change of controlled exogenous variables or controlled
structural parameters, the jerky path described by national income and
other economic aggregates in the last hundred years or so may be re-
placed by a smoother one in the future. In particular, jumps due to
sudden changes of exogenous variables or to rare, but nonetheless possi-
ble, large random disturbances may be counteracted by the construc-
tion of appropriate ‘“shock-absorbers.” If the existing structure is known, -
one can attempt to find the extent to which a given and feasible change
in the institutional characteristics of the structure would affeet certain
properties of the oscillatory path of an important economic variable,
such as the wave frequency, or the so-called damping ratio between the
amplitudes of two successive waves in the absence of new impulses. In
this way Tinbergen [1939, p. 169] tried to measure the effect of increas-
ing or decreasing the {properly defined) rigidity of wages or of prices
upon the shape of the business fluctuations.

Economic history knows remarkable examples of stabilizing institu-
tions. Possibly the best known is the unwritten law that is said to have
ruled the conduct of the Bank of England during the nineteenth century.
Any serious change in the balance of payments, as indicated by the out-
fiow or inflow of gold, was counteracted by changes in the discount rate.
More recently, in the discussion of the stabilization of employment
and of the price level, institutional rules were proposed that would ob-
ligate the monetary or fiscal authorities to take specified measures that
would nip deflations and inflations in the bud.

It has been argued that the formulation of such rules need not pre-
suppose any knowledge of economiec structure or, in particular, of its
numerical characteristics. As Lerner [1941) put it, the motorist, ignorant
of the car mechanism, steers his wheel quite suceessfully, responding
instantaneously to changes in the surface and the direction of the road.
Other economists have even suggested what we may call “pilotless”
devices. Thus, income tax receipts, at a tax rate fixed once and for all,
will rise and fall with money income, thus counteracting inflation or de-
flation. (Such automatisms have been calied, e.g., by Hart [1943],
“built-in flexibilities”.) Again, it has been argued that the knowledge of
economic structure is not necessary if one wants to stabilize the economy
by such devices,
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Our previous conclusions (Sections 3 and 8) can be applied. Thereis a
ifference between changing the exogenous variables and changing the
structure. If a certain rule of fiscal or monetary action in response to
changes in national income or in price level has been tried out long
enough, in various doses and with various delays, such experience can
indeed suffice to determine when and how intensely the measure should
be applied. If income tax has been operating in various situations and
at various tax rates, it is possible to estimate the tax rate that would
best fulfill the task of damping fluctuations of national income. In such
cases we have merely to fit an empirical relation between, say, bank-
reserve ratios or income-tax rates, on the one hand, and some measure
of the viclence of price or national income fluctuations on the other.
The case is then indeed analogous to that of Lerner’s motorist, or, for
that matter, to the case of the firm that (as in Section 3) collected ex-
perience on the effect of output upon profit without ever bothering to
explain this effect by the existing behavior of buyers, the cost structure,
and the rate of the excise tax on the firm’s product.

Suppose, however, that the institution in question is to be introduced
for the first time. To fix in advance the rule of monetary action that will
stabilize prices and national income most quickly and effectively, even
within a large margin of error, it is necessary to know, for example, the
lags and elasticities involved in the relation describing consumers’ re-
sponse to changes in national income, prices, cash balances, etc., and the
Iags and elasticities involved in other structural relations at a time when
the institution was not in force. To experiment with the institution would
require t0o much trial and error.2

11. MATHEMATICS AND PREDICTION

All of the foregoing was concerned with the logic of economic knowl-
edge and of its uses. This logic is the same whether or not mathematical
symbols are used. However, mathematical presentation is of great help
in testing whether a set of structural relations proposed by a theorist is
internally consistent and whether it can be determined numerically
from observations. Mathematical presentation is hardly avoidable when
appropriate statistical methods are to be applied to observations in order

22 James Angell {1947, p. 201] sees here ‘‘the familiar problem of taking the right
compensatory action premptly enough and in the right degree. . . . How much
change in what indices should be the signal for how big a change in what fiscal
and monetary operations, to offset or reverse a process of undesired general change
which is elready under way? Not only the nature of the actually current moverent
but the effects of the compensation measures themselves . . . must be gauged . . .
if the result is not to be merely the imposition of a new set of ‘artificial’ or ‘in-
duced’ fluctuations on those already operating.”’
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to estimate the structure or (if no structural change is envisaged) to
estimate its reduced form.

As stated in Section 7, the technician cannot be blamed if a certain
kind of data results in a predicted range of values that is so wide, or has
such a small probability attached to it, as to be useless, The mathematical
method and result will merely reveal what otherwise might remain con-
cealed. Mathematics does not suppress any information available for
other methods, dnd it makes clearer when and how additional informa-
tion must be used—for example, to extend the time series, to supple-
ment them by cross-section data such as attitude surveys, or to insert
additional knowledge on technology and institutions.

12. ConcrLusion®

This chapter has been concerned with the type of knowledge useful
or necessary for determining the best policy. In particular, the circum-
stances were stated under which the choice of best policy requires the
knowledge of “structure.” Structure was defined as a set of conditions
which did not change while observations were made but which might
change in the future. If a specified change of structure is expected or in-
tended, prediction of variables of interest to the policy-maker requires
gome knowledge of past structure. It follows that if among the policies
considered there are some that invalve structural changes, then the choice
of the poliey best calculated to achieve given ends presupposes knowl-
edge of the structure that has prevailed before. ,

In economies, the conditions that constitute a structure are (1) a set
of relations describing human behavior and institutions as well as tech- -
nological laws and involving, in general, nonobservable random dis-
turbances and nonobservable random errors of measurement; (2) the
joint probability distribution of these random quantities.

Economic theories try to explain observed facts by postulating plausi-
ble human behavior under given institutional and technological condi-
tions. To be consistent with facts, they should alse introduce random
disturbances and errors. Thus every economic theory suseceptible to
factual tests must deseribe a strueture or a class of structures,

It follows that a theory may appear unnecessary for policy decisions
until a certain structural change is expected or intended. ¥t becomes
necessary then. Since it is difficult to specify in advance what structural
changes may be visualized later, it is almost certain that a broad analysis
of economic¢ structure, later to be filled out in detail according to needs,
is not a wasted effort.

Thus, practice requires theory.

4 SBee Marschak [1947hb].
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I. InrrRODUCTION

The construction of dynamie economic models has become an im-
portant tool for the analysis of economic fluctuations and for related
problems of policy. In these models, macro-economic variables are
thought of as determined by a complete system of equations. The meaning
of the term ‘“‘complete” is discussed more fully below. At present it may
suffice to deseribe a complete system as one in which there are as many
equations as endogenous variables, that is, variables whose formation is
to be “explained” by the equations. The equations are usually of, at
most, four kinds: equations of economic behavior, institutional rules, ‘
technological laws of transformation, and identities. We shall use the
term structural equations to comprise all four types of equations.

Systems of structural equations may be composed entirely on the basis
of economic “theory.” By this term we shall understand the combination
of {a) principles of economic behavior derived from general observation-—
partly introspective, partly through interview or experience—of the
motives of economic decisions, (b) knowledge of legal and institutional
rules restricting individual behavior (tax schedules, price controls,
reserve requirements, etc.), (¢} technological knowledge, and (d) care-
fuily constructed definitions of variables. Alternatively, a structural

11 am indebted to present and former Cowles Commission staff members and
to my students for valuable critical comments regarding contents and presenta-
tion of this chapter. An earlier version of this paper was presented before the
Chicago Meeting of the Econometrie Society in December 1947. ‘This chapter is
reprinted, with minor revisions and the addition of the sixth example in Section
2, from Econometriza, Vol. 17, April, 1949, pp. 125-144. Boldface numbers in brack-
ets refer to the list of references at the end of the chapter.

27
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equation system may be determined on the dusl basis of such “theory”
combined with systematically collected statistical data for the relevant
variables for a given period and eountry or other unit. In this chapter
we shall discuss certain problems that arise out of model construetion
in the second case,

Where statistical data are used as one of the foundation stones on
which the equation system is erected, the modern methods of statistical
inference are an indispensable instrument. However, without economic
“theory” as another foundation stone, it is impossible to make such
statistical inference apply directly to the equations of economic behavior
which are most relevant to analysis and to policy discussion. Statistical
inference unsupported by economic theory applies to whatever statistical
regularities and stable relationships can be discerned in the data.? Such
purely empirical relationships when discernible are likely to be due to the
presence and persistence of the underlying structural relationships, and -
(if so0) could be deduced from a knowledge of the latter. However, the
direction of this deduction cannot be reversed—from the empirical to the
structural relationships—except possibly with the help of a theory which
specifies the form of the structural relationships, the variables which
enter into each, and any further details supported by prior observation or -
deduction therefrom. The more detailed these specifications are made in
the model, the greater scope is thereby given to statistical inference
from the data to the structural equations. We propose to study the limits
to which statistical inference, from the data to the structural equations
(other than definitions), is subject, and the manner in which these limits
depend on the support received from economic theory.

This problem has attracted recurrent discussion in econometric litera-
ture, with varying terminclogy and degree of abstraction. Reference is
made to Pigou [16], Henry Schultz [17, especially Chapter II, Section
II1c], Frisch [4, 6], Marschak [1B, especially Sections IV and V], Haa~
velmo [6, especially Chapter V]. An attempt to systematize the termi-
nology and to formalize the treatment of the problem has been made
over the past few years by various authors connected in one way or
another with the Cowles Commission for Research in Economics. Since '
the purpose of this article is expository, I shall draw freely on the work
by Koopmans and Rubin [14], Wald [19], Hurwicz [7, 8], Koopmans and
Reiersol {13], without specific acknowledgment in each case. We shalil
proceed by discussing a sequence of examples, all drawn from econo-
metrics, rather than by a formal logical presentation, which can be found
in references [14], [7], and [13].

* See T. C. Koopmans [12].
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2. CoNncEPTs AND ExaMpPLES

The first example, already frequently diseussed, is that of a competitive
market for a single commodity, of which the price p and the quantity ¢
are determined through the intersection of two rectilinear schedules,
of demand and supply respectively, with instantaneous response of
quantity to price in both cases. For definiteness’ sake, we shall think of
observations as applying to suecessive periods in time. We shall further
assume that the slope coefficients « and vy of the demand and supply
schedules respectively are constant through time, but that the levels of
the two schedules are subject to not directly observable shifts from an
equilibrium level. The structural equations can then be written as:

O {(1&) g+ ap+e=u (demand)

(1s) g+1yp+n=v  (supply).
Concerning the shift variables ¥ and » we shall assume that they are
random drawings from a stable joint probability distribution with mean
values equal to zero:

{(2) Qlu, v), gu =0, & =0.

We shall introduce a few terms which we shall use with corresponding
meaning in all examples. The not directly observable shift variables v, v
are called latent variables, as distinet from the observed variables, p, g.
We shall further distinguish structure snd model. By a structure we mean
the combination of a specific set of ocructural equations (1) (such as is
obiained by giving specific numerical values to a, v, ¢, %) and a specific
distribution function (2} of the latent variables (for instance, a normal
distribution with specific, numerically given, variances and covariance).
By a model we mean only a specification of the form of the structural
equations (for instance, their linearity and a designation of the variables
occurring in each equation), and of a class of functions to which the dis-
tribution function of the latent variables belongs (for instance, the class
of all normal bivariate distributions with zero means). More abstractly,
a model can be defined as a set of structures. For a useful analysis, the
model will be chosen s0 as to incorporate relevant a priori knowledge or
hypotheses as to the economic behavior to be described. For instance,
the model here discussed can often be narrowed down by the usual
specification of a downward sloping demand curve and an upward sloping
supply curve:

(3) a >0, v < 0.

Let us assume for the sake of argument that the cbservations are pro-
duced by a structure, to be called the ‘““true” structure, which is con-
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tained in (permitted by) the model. In order to exclude all questions of
sampling variability (which are a matter for later separate inquiry),
let us further make the unrealistic assumption that the number of ob-
servations produced by this structure can be increased indefinitely.
What inferences can be drawn from these observations toward the “true”
structure?

A simple reflection shows that in our present example neither the
“true” demand schedule nor the “true” supply schedule can be deter-
mined from any number of observations. To put the matter geometri-
cally, let each of the two identical scatter diagrams in Figures 1A and
1B represent the jointly observed values of p and ¢. A structure com-
patible with these observations can be obtained as follows: Select arbi-
trarily “presumptive’ slope coefficients « and v of the demand and supply
schedules. Through each point S(p, ¢) of the scatter diagrams draw two
straight lines with slopes given by these coefficients. The presumptive
demand and supply schedules will intersect the quantity axis at distances
— ¢+ uwand — n <4 v from the origin, provided the presumptive slope
coefficients « and v are the “true” ones. We shall assume this to be the
case in Figure 1A. In that case the values of € and 4 can be found from
the consideration that the averages of u and v in a sufficiently large
sample of observations are practically equal to zero.

However, nothing in the situation considered permits us to distinguish
the “true” slopes a, ¥ (as shown in Figure 1A} from any other presump-
tive slopes (as illustrated in Figure 1B). Any arbitrary set of slope co-
efficients o®, ¥+® (supplemented by corresponding values &, 2% of the
intercepts) represents another, statistically just as acceptable, hypothesis
concerning the formation of the observed variables.

Let us formulate the same remark algebraically in preparation for fur-
ther examples in more dimensions. Let the numerical values of the “true”
parameters a, v, €, 7 in (1) be known to an individual who, taking delighe
in fraud, multiplies the demand equation (1d) by 23, the supply equation
(1s) by }3, and adds the result to form an equation

2a + v 2+17 @

3 Pt—3—=u,
which he proclaims to be the demand equation. This equation is actually
different from the “true” demand equation (1d) because (3) implies
a # . Similarly he multiplies the same equations by 24 and 34 respec-
tively, say, to produce an equation

(45) q+2“';3”p+2“g3”=ve,

different from the “true” supply equation (1s), but which he presents as
if it were the supply equation. If our prankster takes care to select his

(4d) g+




SEC. 2] TDENTIFICATION PROBLEMS 31

multipliers in such a manner as not to violate the sign rules (3} imposed
by the model, the deceit cannot be discovered by statistical analysis of
any number of observations.® For the equations {4), being derived from
(1), are satisfied by all data that satisfy the “true’’ equations (1). More-
over, being of the same “form” as equations (1), the equations (4) are
equally acceptable a priori.

Qur second example differs from the first only in that the model speci-
fies 2 supply equation containing in addition an exogenous variable. To
be definite, we shall think of the supply of an agricultural product as
affected by the rainfall r during a critical period of crop growth® or crop

I —e+u—->-{ g q

FiGURE 1A Ficure 1B

gathering. This variable is called exogenous to our model to express the
plausible hypothesis that rainfall r, while affecting the market of the
commodity concerned, is not itself affected thereby. Put in mathematical
terms, this hypothesis specifies that the disturbances u and v in

) {(Sd) g+ ap + e =u {demand)
(58) g+vyp+ & +a=v (supply)
are statistically independent® of the values assumed by r.

* The deceit could be discovered if the model were to specify a property (e.g.,

independence) of the disturbances u and » that i3 not shared by u = (2u 4 v)/3
“and o” = (2u + 3v)/5. We have not made such a specification.

1 With respect to this example, the assumption of a linear relationship can be
maintained only ¥ we think of a certain limited range of variation in rainfali.
Another difficulty with the example is that for most agricultural products, the
effect of price on supply is delayed instead of instantaneous, as here assumed. A
practically instantaneous effect can, however, be expected in the gathering of

wild fruits of nature.
5 It is immaterial for this definition whether the exogenous variabie is regarded
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It will be seen at a glance that the supply equation still cannot be
determined from a sample of any size. If, starting from “true” structural
equations (5) we multiply by —14 and 34, say, and add the results to
obtain a pretended supply equation,

In—e_ o

3y -
Y -a = ¢

2

of the same prescribed form as (5s), any data will satisfy this equation
(6s) as well as they satisfy the two equations (5).

A gimilar reasoning can nof be applied to the demand equation in the
present model. Any attempt to construct another pretended demand
equation by a linear combination involving the supply equation (5s)
would introduce into that pretended demand equation the variable r
which, by the hypotheses underlying the model, does not belong in it.

It might be thought that, if » has the properties of a random variable,
its presence in the pretended demand equation might be concealed be-
cause its “contribution” cannot be distinguished from the random dis-
turbanece in that equation. To be specific, if 44 and —14 are arbitrarily
selected multipliers, the disturbance in the pretended demand equation
raight be thought to take the form

(6s) g+

p+¥r+

q;=4u—v é

3 3"
This, however, would violate the specification that r is exogenous and
that therefore r and »® are to be statistically independent as well as r
and (u, v). The relevance of the exogenous character of r to our present
discussion is clearly illustrated by this remark.

Our analysis of the second example suggests (and below we shall cite a
theorem establishing proof) that a sufficiently large sample does indeed
contain information with regard to the parameters «, ¢ of the demand
equation (it being understood that such information is conditional upaen

as a given function of time—a concept perhaps zpplicable to a variable set by
government policy—or as itself a random variable determined by some other
structure involving probability distributions—a concept applicable particularly
to weather variables. It should further bé noted that we postulate independence
between r and (u, v), not between r and (p, ¢), although we wish to expreas that r
“ia not affected by’ p and ¢. The meaning to be given to the Iatter phrase is that
in other equations explaining the formation of r the variables (p, ¢) do not enter.
Precisely this is implied in the statistieal independence of r and (u, v}, because
(p, ¢} is, by virtue of (5), statistically dependent on (x, #), and any role of (p, ¢}
in the determination of » would therefore create statistical dependence between
r and (u, »). On the other hand, the postulated statistical independence between
r and (%, v) is entirely compatible with the obvious influence, by virtue of (5), of

roo (p, g).
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the validity of the model). It can already be seen that there must be the
following exception to the foregoing statement. If in fact (although the
model does not require it) rainfall has no influence on supply, that is, if
in the “true” structure § = 0, then any number of observations must
necessarily be compatible with the model (1) and hence does not convey
information with regard to either the demand equation or the supply
equation.

As a third example we consider a model obtained from the preceding
one by the inclusion in the demand equation of consumers’ income 7 as
an additional exogenous variable. We assume the exogencus character of
consumers’ income merely for reasons of exposition, and in full aware-
ness of the fact that actually price and quantity on any market do affect
income directly to some extent, while furthermore the disturbances u
and v affecting the market under consideration may well be correlated
with similar disturbances in several other markets which together have
a considerably larger effect on consumers’ income.

The structural equations are now

(7d) g+ ap + 8i +e=u (demand)
{(7s) g +p +éort+a=v (supply).

Since each of the two equations now excludes a variable specified for the
other equation, neither of them can be replaced by a different linear
combination of the two without altering its form. This suggests, and
proof is cited below, that from a sufficiently large sample of observations,
the demand equation ean be accurately determined provided rainfall
actually affects supply (6 # 0), and the supply equation can be deter-
mined provided consumers’ income actually affects demand (8 = 0).
The fourth example is designed to show that situations may occur in
which some but not all parameters of a structural equation can be de-
termined from sufficiently many observations. Let the demand equa-
tion contain both this vear’s income 4, and last year’s income i_, , but
let the supply equation not contain any variable absent from the demand

equation:

® {f(sd) g+ ap+ Bo+ Boyis + € = u
(89 g+ p + 7=

Now obviously we cannot determine either « or ¢, because linear com-
binations of the equations (8} can be constructed which have the same
form as (8d) but other® values «® and ¢® for the coefficients o and e.

¢ As regards & this is true whenever ¢ 7. As regards ol it is safeguarded by
3.
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However, as long as (8d) enters with some nonvanishing weight into such
a linear combination, the ratio 8.1/8 is not affected by the substitution
of that linear combination for the “true” demand equation. Thus, if
the present model I8 correct, the observations contain information with
respect to the relative importance of present and past income to demand,
whereas they are silent on the price elasticity of demand.

The fifth example shows that an assumption regarding the joint distri-
bution of the disturbances % and v, where justified, may open the door
to a determination of a structural equation which is otherwise inde-
terminate. Returning to the equation system (5) of our second example,
we shall now make the model specify in addition that the disturbances
u in demand and v in supply are statistically independent, and that the
standard deviation s, of u does not vanish. Remembering our previous
statemnent that the demand equation can already be determined without
the help of such an assumption, it is clear that in attempting to construct
a “pretended” supply equation, no linear combination of the ‘“true
demand and supply equations (5), other than the “true” supply equation
(5s) itself, can be found which preserves the required independence of
disturbances in the two equations. Writing A and 1 — X for the multi-
pliers used in forming such a linear combination, the disturbance in the
pretended supply equation would be

9 P = (1 — M.

Since u and » are by assumption independent, the disturbance v® of the
pretended supply equation is independent of the disturbance % in the
demand equation (already found determinable) if and only if A = 0,
ie,, if the pretended supply equation coincides with the “true” one.

The foregoing reasoning depends essentially on the specification that
@, In (5) is positive (which ean be tested from observations). If ¢, were
to turn out small in comparison with ¢, , values of A could be found that
are large enough to make

(10) P=da+{l-n7, 22 = e+ (1 — Ny

considerably different from vy and 75 in (58), but also small enough to
introduce only a slight correlation between v® and u. In this case many
observations would be needed for us to derive much benefit from the
fact that the supply equation is in principle determinable. However,
the question how many observations would be required is a sampling
problem and as such is outside the topic of this chapter.

The opposite situation exists, of course, if ¢, is large and o, is small.
This suggests a sizth example in which we do not specify independence
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of » and v, but instead add to the model of the second example the speci-
fication that o, not exceed a certain bound, given a priori,

(11) oy & oo,
If in this case o, turns out to be much larger than ¢, , we have from (9)
(12) o2® = Moo + (1 — Nes 4 201 — Aoue,

where o, denotes the eovariance of « and ». The condition that this ex-
pression not exceed o may place on ) certain bounds, which we will not
evaluate in detail but which may be narrow enough to allow 'y&? and %
in (10) only a limited range. In such circumstances, although v and 7
zannot be determined with precision no matter how large the number of
observations, finite and possibly narrow ranges within which these pa-
rameters are included can be determined with increasing precision as
the number of observations grows.

We emphasize again the expository character of the foregoing ex-
amples. It has already been indicated that the income variable 7 is not
truly exogenous. By assuming it to be so, we have held down the size of
the equation system underlying our discussion, and we may as a result
have precluded ourselves from seeing indeterminacies that could come to
light only by a study of all relationships participating in the formation
of the variables involved. It will therefore be necessary to develop criteria
by which indeterminacies of the coefficients of larger equation systems
can be detected. Before discussing such criteria for linear systems, we
shall formalize a few of the concepts used or to be used.

3. THE IDENTIFICATION OF STRUCTURAL PARAMETERS

In our discussion we have used the phrase ““a parameter that can be
determined from a sufficient number of observations.” We shall now
define this concept more sharply, and give it the name identifiability of a
parameter. Instead of reasoning, as before, from “a sufficiently large
number of observations” we shall base our discussion on a hypothetical
knowledge of the probability distribution of the observations, as defined
more fully below. It is clear that exact knowledge of this probability
distribution cannot be derived from any finite number of observations.
Such knowledge is the limit approachable but not attainable by extended
observation. By hypothesizing nevertheless the full availability of such
knowledge, we obtain a clear separation between problems of statistical
inference arising from the variability of finite samples and problems of
identification in which we explore the limits to which inference even
from an infinite number of observations is subject.
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A structure has been defined as the combination of a distribution of
latent variables and a complete set of structural equations. By a complete
sel of equations we mean a set of as many equations as there are endog-
enous variables. Each endogenous variable may oceur with or without
time lags, and should oceur without lag in at least one equation. Also,
the set should be such as to permit unique determination of the nonlagged
values of the endogenous variables from those of the lagged endogenous,
the exogenous, and the latent variables. Finally, by endogenous variables
we mean observed varizbles which are not exogenous, i.e., variables
which are not known or assumed to be statistically independent of the
latont variables, and whose occurrence in one or more equations of the
set is necessary on grounds of ““theory.”

It follows from these definitions that, for any specific set of values of
the exogenous variables, the distribution of the latent variables (i.e., one
of the two eomponents of a given structure) entails or generates, through
the structural equations (i.e., the other component of the given strue-
ture), a probability distribution of the endogenous variables. The latter
distribution is, of course, conditional upon the values specified for the
exogenous variables at each time point of observation. This conditional
distribution, regarded again as a function of all specified values of exog-
enous variables, shall be the hypothetical datum for our discussion of
identification problems.

We shall call two structures § and S¥ (observationally) equivalent (or
indistinguishable) if the two conditional distributions of endogenous
variables generated by S and S% are identical for all possible values of the
exogenous variables. We shall call a structure S permitted by the model
(uniquely) vdentifiable within that model if there is no other equivalent
structure S® contained in the model. Although the proof has not yet been
completely indicated, it may be stated in illustration that in our third
example almost all structures permitted by the model are identifiable.
The only exceptions are those with either 8 = 0 or § = 0 (or both). In
the first and second examples, however, no structure is identifiable, al-,
though in the second example we have stated that the demand equa-
tion by itself is determinate. To cover such cases we shall say that a cer-
tain parameter 8 of a structure 8 is uniquely #dentifiable within a model’
if that parameter has the same value for all structures S® equivalent to
8 contained in the model. Finally, a structural equation is said to be
identifiable if all its parameters are identifisble.

This completes the formal definitions with which we shall operate.
They can be summarized in the statement that anything is called identi-
fiable that can be determined from a knowledge of the distribution of
the endogenous variables, given the model (which is accepted as valid).
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We now proceed to a discussion of the application of this concept to
linear models of the kind illustrated by our examples.

4. IDENTIFIABILITY CrITERIA IN LINEAR MODELS

In our discussion of these examples it has been possible to coneclude
that a certain structural equation is not identifiable whenever we are
able to construct a different equation, obtained by linear combination
of some or all structural equations, which likewise meets the specifica-
tions of the model. In the opposite case, where we could show that no
such different linear combination exists, we could not yet conclude defi-
nitely that the equation involved is identifiable. Could other operations
than linear combination perhaps be used to derive equations of the same
form?

We shall now cite a theorem which establishes tiiat no such other
operations can exist. The theorem relates to models specifying a complete
set of structural equations as defined above, and in which a given set of
endogenous and exogenous variables enters linearly. Any time lags with
which these variables may occur are supposed to be integral multiples
of the time interval between successive observations. Furthermore, the
exogenous variables (considered as different variables whenever they
occur with a different time lag) are assumed not to be linearly dependent,
i.e., in the functional sense.” Finally, although simultaneous disturbances
in different structural equations are permitted to be correlated, it is
assumed that any disturbances operating in different time units (whether
in the same or in different structural equations) are statistically inde-
pendent.

Suppose the model does not specify anything beyond what has been
stated. That is, no resirictions are specified yet that exclude some of the
variables from specific equations. Obviously, with respect to such a broad
model, not a single structural equation is identifiable. However, a
theorem has been proved [14] to the effect that, given a structure S within
that model, any structure 8% in the model, equivalent to S, can be de-
rived from S by replacing each equation by some linear combination of
some or alt equations of S.

It will be clear that this theorem remains true if the model is narrowed
down by excluding certain variables from certain equations, or by other

? The criteria of identifiability to be stated would require amended formula-
tion if certain identities involving endopenous variables were such that each
variable oceurring in them also oceurs, in some equation of the complete set, with
a time lag, and if this time lag were the same for all such variables. In this case,
a complieation arises from linear (functional) dependence among lagged en-
dogenous {and possibly exogenous) variables.
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restrictions on the parameters. Thus, whenever in our examples we have
concluded that different linear combinations of the same form prescribed
for a structural equation did not exist, we have therewith established the
identifiability of that equation. More generally, the analysis of the
identifiability of a structural equation in a linear model consists in a
study of the possibility of producing a different equation of the same
prescribed form by linear combination of all equations. If this is shown
to be impossible, the equation in question is thereby proved to be identi-
fiable. To find criteria for the identifiability of a structural equation in a
linear model is therefore a straightforward mathematical problem, to
which the solution has been given elsewhere [14]. Here we shall state
without proof what the criteria are. They apply to the case where the
additional specifications in the model take the form of (a} exclusions of
specified variables from specified equations (or, more generally, specified
homogeneous linear restrictions on the coeflicients of specified equations)
and (b) a rule of normalization {nonhomogeneous restriction) on each
equation, to preclude the trivial multiplication of all coeflicients of an
equation by a constant. The latter type of restriction was implicitly in-
troduced in the examples of Section 2 by giving to the variable ¢ the
coefficient 1 in each equation.

A necessary condition for the identifiability of a structural equation
within a given linear model is that the number® of variables excluded
from that equation (more generally, the number of linear restrictions on
the parameters of that equation) be at least equal to the number (G, say)
of structural equations, less one. This is known as the order condition of
identifiability. A necessary and sufficient condition for the identifiability
of a structural equation within a linear model, restricted only by the
exelusion of certain variables from certain equations, is that we can form
at least one nonvanishing determinant of order G — 1 out of those co-
efficients, properly arranged, with which the variables exeluded from
that structural equation appear in the &' — 1 other structural equations.
This is known as the rank condition of identifiability. (It can also be
stated in more general form for the case of more general homogeneous
linear restrictions.)

The application of these criteria to the foregoing examples is straight.
forward. In all cases considered, the number of structural equations is
G = 2. Therefore, any of the equations involved can be identifiable
through exclusion of variables only if at least G — 1 = 1 variable is ex-
cluded from it by the model. If this is so, the equation is identifiable
provided at least one of the variables so excluded occurs in the other

8 Again counting lagged variables as separate variables.
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equation with nonvanishing coefficient (a determinant of order 1 equals
the value of its one and only element). For instance, the conclusion al-
ready reached at the end of the discussion of our second example is now
confirmed: The identifiability of the demand equation (5d} is only then
safeguarded by the exclusion of the variable r from that equation if
§ # 0, that is, if that variable not only possibly but actually occurs in the
supply equation.

5. THE STAaTISTICAL TEST OF A PrIoRI UNCERTAIN IDENTIFIABILITY

The example just quoted shows that the identifiability of one structural
parameter, 6, say, may depend on the value of another structural pa-
rameter, 5, say. In such situations, which are of frequent occurrence, the
identifiability of @ cannot be settled by a priori reasoning from the model
alone. On the other hand, the identifiability of # cannot escape all analy-
sis because of possible nonidentifiability of . As is argued more fully
elsewhere [13], since the identifiability of any parameter is a property
of the distribution of the observations, it is subject to some suitable
statistical test, of which the degree of conclusiveness tends to certainty
as the number of observations increases indefinitely. The validity of this
important conclusion is not limited to linear models.

In the case of a linear model as described in Section 4, the present
statement can also be demonstrated explicitly by equivalent reformula-
tion of the rank criterion for identifiability in terms of identifiable pa-
rameters only. By the reduced form of a complete set of linear structural
equations as deseribed in Section 4, we mean the form obtained by solv-
ing for each of the dependent (i.e., nonlagged endogenous) variables, in
terms of the predetermined (i.e., exogenous or lagged endogenous) vari-
ables, and in terms of transformed disturbances (which are linear fune-
tions of the disturbances in the original structural equations). It will be
argued more fully in Chapter VI, Section 1.6, that the coefficients of the
equations of the reduced form are parameters of the joint distribution of
" the observations, and as such are always identifiable.

It may be stated here without proof that the following rank criterion
for identifiability of a given structural equation, in terms of coefficients
of the reduced form, is equivalent to that stated in Section 4 above:
Cousider only those equations of the reduced form that solve for de-
pendent variables, specified by the model as occurring in (strictly, as not
excluded from) the structural equation in question. Let the number of
the equations so obtained be G, where G* < G. Now form the matrix
.44 of the coeflicients, in these G° equations, of those predetermined
variables that are excluded by the model from the structural equation
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involved. A necessary and sufficient condition for the identifiability of
that structural equation is that the rank of I1s ++« be equal to G* — 1. A
proof of this condition is given in Chapter VI, Section 4.4. A direct proof
of the equivalence of the two identification criteria is given in Chapter
VI, Appendix A.

6. IDENTIFICATION THROUGH DISAGGREGATION AND INTRODUCTION OF
SpECIFIC EXPLANATORY VARIABLES

As a further exercise in the application of these criteria, we shall con-
sider a question which has already been the subject of a discussion be-
tween Ezekiel (2, 3] and Klein [9, 10]. The question is whether identi-
fiability of the investment equation can be attained by the subdivision
of the investment variable into separate categories of investment. In the
discussion referred to, which took place before the concepts and ter-
minology employed in this article were developed, questions of identifi-
ability were discussed together with questions regarding the merit of
particular economic assumptions incorporated in the model, and with
questions of the statistical method of estimating parameters that have
been recognized as identifiable. In the present context we shall avoid the
latter two groups of problems and concentrate on the formal analysis of
identifiability, accepting a certain model as economically valid for pur-
poses of discussion. :

As a starting point we shall consider a simple model expressing the
crudest elements of Keynesian theory. The variables are, in money
amounts,

S savings
I investment
(13) Y income

Y_; income lagged one year.

The structural equations are:

(14id) S —1 -0
(14) (14S) S —- alY - azY_l —ay = U
(141) I — ﬁIY fond ﬁzY_l - ﬁo = v

Of these, the first is the well-known savings-investment identity arising
from Keynes’s definitions of these concepts.® The second is a behavior
equation of consumers, indicating that the money amount of their

? These definitions include in investment all increases in inventory, ineluding
undesired inventories remaining in the hands of manufacturers or dealers as a
result of falling demand. In principle, therefore, the “‘investment’’ equation should
include a term or terms explaining such inventory changes. The absence of suei.



SEC. 6] IDENTIFICATION PROBLEMS 41

savings (income not spent for consumption) is determined by present and
past income, subject to a random disturbance u. The third is a behavior
equation of entrepreneurs, indicating that the money amount of invest-
ment is determined by present and past income, subject to a random dis-
turbance ».

Bince the identity (14id) is fully given a priori, no question of identi-
fiability arises with respect to the first equation. In both the second and
third equations, only one variable is excluded which appears in ancther
equation of the model, and no other restrictions on the coeffictents are
stated.”® Hence both of these equations already fail to meet the necessary
order criterion of identifiability. This could be expected because the two .
equations connect the same savings-investment variable with the same
two income variables, and therefore cannot be distinguished statistically.

Ezekiel attempts to obtain identifiability of the structure by a refine-
ment of the model as a result of subdivision of aggregate investment 7
into the following four components: '

(I, investment in plant and equipment
| I; investment in housing
(15a) {[3 temporary investment: changes in consumers’ credit and in
business inventories
{I 1 quasi-investment: net contributions from foreign trade and
the government budget.

If each of these components were to be related to the same set of ex-
planatory variables as occurs in (14), the disaggregation would be of no
help toward identification. Therefore, for each of the four types of in-
vestment decisions, Ezekiel introduces a separate explanatory equation,
either explicitly or by implication in his verbal comments. In attempting
to formulate these explanations in terms of a complete set of behavior
equations, we shall intreduce two more variables:

[H semi-independent cyclical component of housing investment

(15b) IE exogenous component of quasi-investment.

terms from (14} and from later elaborations thereof may be taken as expressing the
“theory™ that for annual figures, say, such changes can be regarded as random.
Alternatively, investment may be defined so as to exclude undesired inventory
changes, and (14id) may be interpreted as an ‘“‘equilibrium condition,’” expressing
the randomness of such changes by replacing the zero in the right-hand member
by a disturbance w. The obvious need for refinement in this crude “theory’ does
not preciude it use for illustrative purposes.

© The normalization requirement that the variables S and I shall have coeffi-
cients 41 in (148) and (14I) respectively does not restrict the relationships in-
volved but merely serves to give a common level to coefficients which otherwise
would be subject to arbitrary proportional variation.
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In addition, Linear and quadratic functions of time are introduced as
trend terms in some equations by Ezekiel. For purposes of the present
discussion, we may as well disregard such trend terms, because they
would help toward identification only if they could be excluded a priori
from some of the equations while being included in others—a position
advocated neither by Ezekiel nor by the present author.

With these qualifications, ‘“Ezekiel’s model” can be interpreted as
follows:

((6id) S =L, — I, — I — I, =0
(168) 8 —aY — ¥ —ap = U
(16) (1611) I; - ,31Y - ,BzY_l b ﬁo =
(1612) I - 'YIY - "{zY—l - H - Yo = Uz
(16Ls) I - &Y + 87, —f=
(1614 I, — &Y - QY_l —F - = vy

(16id) is the savings-investment identity. (168) repeats (148}, and
(161,) is modeled after (14I). More specific explanations are introduced
for the three remaining types of investment decisions.

Housing investment decisions I, are explained partly on the basis of
income'" ¥, partly on the basis of a “‘semi-independent housing cycle” H.
In Ezekiel’s treatment H is not an independently observed variable, but
a smooth long cycle fitted to I. We share Klein’s objection [9, p. 255] to
this procedure, but do not think that his proposal to substitute a linear
function of time for H does justice to Ezekiel’s argument. The latier
definitely thinks of H as produced largely by a long-cycle mechanism
peculiar to the housing market, and quotes in support of this view a study
by Derksen [1} in which this mechanism is analyzed. Derksen constructs
an equation explaining residential construction in terms of the rent
level, the rate of change of income, the level of building cost in the recent
past, and growth in the number of families; he further explains the rent
level in terms of income, the number of families, and the stock of dwelling
units (all of these subject to substantial time lags). The stock of dwelling
units, in its turn, represents an accumulation of past construction dimin-
ished by depreciation or demolition. Again accepting without inquiry the
economic assumptions involved in these explanations, the point to be
made is that H in (161,) can be thought to represent specific obhservable
exogenous and past endogenous variables.

Temporary investment I, is related by Ezekiel to the rate of change in
income. Quasi-investment I, is related by him partly to income™ (espe-

I* We have added a term with Y_, because the exclusion of such a term could
hardly be made the basis for a claim of identifiability.

12 We have again added a term with ¥_, on grounds similar to those stated with
respect to (161.).
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cially via government revenue, imports), partly to exogenous factors
underlying exports and government expenditure where used as an in-
strument of policy. The variable £ in (16L,) is therefore similar to H
in that it ean be thought to represent observable exogenous or past
endogenous variables.

It cannot be said that this interpretation of the variables H and F
establishes the completeness of the set of equations (16) in the sense
defined above. The variable H has been found to depend on the past
values of certain indubitably endogenous variables (building eost, rent
level) of which the present values do not oecur in the equation system
(16), and which therefore remain unexplained by (16). The reader is
asked to accept what could be proved explicitly: that incompleteness of
this kind does not invalidate the criteria of identifiability indicated.”

Let us then apply our criteria of identifiability to the behavior equa-
tions in (16). In each of these, the number of excluded variables is at
least 5, i.e., at least the necessary number for identifiability in a model
of 6 equations. In order to apply the rank criterion for the identifiability
of the savings equation (168), say, we must consider the matrix

Iy () Uy {T) H  (B)

-1 -1 -1 -1 0 0

1 0 0 0 0 0

o 0 i 0 0 -1 0
0 0 1 0 0 0

0 0 0 1 0 -1

There are several ways in which & nonvanishing determinant of order 5
can be selected from this matrix. One particular way is to take the
columns labeled I; , I , I3 , H, E. 1t follows that if the present model is
valid, the savings equation is indeed identifiable.

It is easily seen that the same conclusion applies to the equations
explaining investment decisions of the types I, and I;. Let us now inspect
the rank criterion matrix for the identifiability of (16I,):

S () dTy (L) (B
1 -1 -1 =1 0 'I
1 0 0 0 0
(18) 0 1 0 0 0
0 0 1 0 0
0 0 0 1 -1

Again the determinant value of this square matrix of order 5 is different
from zero. Hence the housing equation is identifiable. A similar analysis

3 Provided, as indicated in footnote 7, there is no linear functional relation-
ship between the exogenous and lagged endogenous variables occurring in (16}.
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leads to the same conclusion regarding the equation (161,) for quasi-
investment.

It may be emphasized again that identifiability was attained not
through the mere subdivision of total investment, but as a result of the

. introduection of specific explanatory variables applicable to some but not

-all components of investment.* Whenever such specific variables are
available in sufficient number and variety of occurrence, on good grounds
of economic theory as defined above, the door has been opened in prinei-
ple to siatistical inference regarding behavior parameters—inference
conditional upon the assumptions derived from “theory.”

How wide the door has been opened, i.e., how much accuraey of esti-
mation can be attained from given data, is of course a matter depend-
ing on many circumstances and to be explored separately by the appro-
priate procedures of statistical inference.” In the present case, the extent
to which the exclusion of H and/or E from certain equations contributes
10 the reliability of estimates of their parameters depends very much on
whether or not there are pronounced differences in the time paths of the
three predetermined variables Y_; , H, E, ie., the variables determined
either exogenously or in earlier time units. These time paths represent in
8 way the basic patterns of movement in the economic mode! considered,
such that the time paths of all other variables are linear combinations of
these three paths, modified by disturbances. If the three basic paths are
sufficiently distinet, conditions are favorable for estimation of identifiable
parameters. If there is considerable similarity between any two of them,
or ¢ven if there is only a considerable multiple correlation between the
three, conditions are adverse.

7. ImpLIicATIONS OF THE CHoiCcE OoF THE MODEL

It has already been stressed repeatedly that any statistical inference
regarding identifiable parameters of economic behavior is conditional

14 In fact, more specific detail was introduced than the minimum necessary to
produce identifiability. Starting again from (14), identifiability can already be
obtained if it is possible to break off from investment I some observable exogenous
component, like public works expenditure P (supposing that to be exogenousfor
the sake of argument). Writing @ = I — P for the remainder of investment, (14)
is then modified to read

§—-@-P =0
(148) S - dx]Y —_— a‘gY_l -— oy =
Q ~BY —8¥, —f=0»,

of which each equation meets our eriteria of identifiability. The intent of this
remark is largely formal, because (14a) is not as defensible a “theory’’ as (16).

15 We are not concerned here with an evaluation of the particular estlmatlon
procedures applied by Ezekiel.
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upon the validity of the model. This throws great weight on a correct
choice of the model. We shall not attempt to make more than a few tenta-
tive remarks about the considerations governing this choice.!s

It is an important question to what extent certain aspects of a model
of the kind considered above are themselves subject to statistical test.
For instance, in the model (16) we have specified linearity of each equa-
tion, independence of disturbances in successive time units, time lags
which are an integral multiple of the chosen unit of time, as well as ex-
clusions of specific variables from specific equations. If is often possible
to subject one particular aspect or set of specifications of the model to
a statistical test which is conditional upon the validity of the remaining
specifications. This is, for instance, the case with respect to the exclusion
of any variable from any equation whenever the equation involved is
identifiable even without that exclusion. However, at least four difficul-
ties arise which point to the need for further fundamental research on the
prineiples of statistical inference.

In the first place, on a given basis of maintained hypotheses (not
subjected to test) there may be several alternative hypotheses to be
tested. For instance, if there are two variables whose exclusion, either
jointly or individually, from a given equation is not essential to its
identifiability, it is possible to test separately (a) the exclusion of the
first variable, or (b) of the second variable, or (c) of both variables
simultaneously, as against (d) the exclusion of neither variable. However,
instead of three separate tests, of (a) against (d), (b) against (d), and
(c) against (d), we need a procedure permitting selection of one of the
four alternatives {a), (b), (¢), (d). An extension of current theory with
regard to the testing of hypotheses, which is concerned mainly with
choices between two alternatives, is therefore needed.

Secondly, if certain specifications of a model can be tested given all
other specifications, it is usually possible in many different ways to
choose the set of “other” specifications that is not subjected to test. It
may not be possible to choose the minimum set of untested specifications
in any way so that strong a priori confidence in the untested specifica-
tions exists. Even in such a case it may nevertheless happen that, for

16 Iy an earlier article 111 I have attempted, in a somewhat different termi-
nology, to discuss that problem. That article needs rewriting in the light of sub-
sequent developments in econometrics. It unnecessarily clings to the view that
each structural equation represents a causal process in which one single dependent
variable is determined by the action upon it of all other variables in the equation.
Moreover, use of the concept of identifiability will contribute to sharper formula-
tion and treatment of the problem of the choice of a model. However, the most
serious defect of the article, in my view, cannot yet be corrected. It arises from
the fact that we do not yet have a satisfactory atatistical theory of choice among
several alternative hypotheses.
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any choice of the set of untested specifications, the additional specifica-
tions that are confirmed by test also inspire some degree of a priori con-
fidence. In such a case, the model as a whole is more firmly established
than any selected minimum set of untested specifications. However,
current theory of statistical inference provides no means of giving quan-
titative expression to such partial and indirect confirmation of anticipa-
tion by observation.

Thirdly, if the choice of the model is influenced by the same data from
which the structural parameters are estimated, the estimated sampling
variances of these estimated parameters do not have that direct relation
to the reliability of the estimated parameters which they would have if
the estimation were based on a model of which the validity is given a
priori with certainty.

Finally, the research worker who constructs a model does not really
believe that reality is exactly described by a “true” structure contained
in the model. Linearity, discrete time lags, are obviously only approxima-
tiona. At best, the model builder hopes to construct & model that con-
tains a structure which approximates reality to a degree sufficient for the
practical purposes of the investigation. The tests of current statistical
theory are formulated as an (uncertain) choice, from two or more sets of
structures (single or composite hypotheses), of that one which contains
the “true” structure. Instead we need to choose the simplest possible
sel—in some sense—which contains a structure sufficiently approxi-
mative—in some sense—to economic reality.

8. For WaaT Purroses Is IDENTIFICATION NECESSARY?

The question should finally be constdered why it is at all desirable to
postulate a structure behind the probability distribution of the variables
and thus to become involved in the sometimes difficult problems of
identifiability. If we regard as the main objeetive of scientific inquiry to
make prediction possible and its reliability ascertainable, why do we need
nore than a knowledge of the probability distribution of the variables to
permit prediction of one variable on the basis of known (or hypothetical)
simultaneous or earlier values of other variables?

The answer to this question is implicit in Haavelmo’s discussion of the
degree of permanence of economic laws [6, see p. 30] and has been formu-
lated explicitly by Hurwicz {8]. Knowledge of the probability distribu-
tion is in fact sufficient whenever there is no change in the structural
parameters between the period of observation from which such knowl-,
edge is derived and the period to which the prediction applies. How-
ever, in many practical situations it is required to predict the values of
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one or more economic variables, either under changes in structure that
come about independently of the economist’s advice, or under hypo-
thetical changes in structural parameters that can be brought about
through policy based in part on the prediction made. In the first case
knowledge may, and in the second case it is likely to, be available as
to the effect of such structural change on the parameters. An example of
the first case is a well-established change in consumers’ preferences. An
example of the second case is given in Chapter I, Section 8. Other ex-
amples are contained in a contribution by Carl Christ to the discussion
of a paper by Smithies [18] on business cycle analysis and publie policy.

In such cases, the “new” distribution of the variables, on the basis of
which predictions are to be constructed, can be derived from the “old”
distribution: prevailing before the structural change only if the known
structural change can be applied to identifiable structural parameters,
i.e., parameters that can be determined from a knowledge of the ‘“old”
distribution combined with the a priori considerations that have en-
tered into the model.
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1. INTRODUCTION

In careful discussions of scientific methodology, particularly those
carried on within a positivist or operationalist framework, it is now
customary to avoid any use of the notion of causation and to speak
instead of “functional relations” and “interdependence” among vari-
ables. This avoidance is derived, no doubt, from the role that the con-
cept of causality has played in the history of philosophy since Aristotle,
and particularly from the objectionable ontologieal and epistemological
overtones that have attached themselves to the causal concept over the
course of that history.

Empiricism has accepted Hume's critique that necessary connections
among events cannot be perceived (and hence can have no empirical
basis). Observation reveals only recurring associations. The proposition
that it is possible to discover associations among events that are, in
fact, invariable ceases to be a provable statement about the patural
world and becomes instead a working rule to guide the activity of the
scientist. He says, I will seek for relationships among events that seem
always to hold in fact, and when it occurs that they do not hold, I will
search for additional eonditions and a broader model that will (until
new exceptions are discovered) restore my power of prediction.” The

! T am indebted to Tjalling C. Koopmans for his valuable suggestions and com-
ments on earlier drafta of this chapter, particularly with regard to the discussion
of the relation between causal ordering and identifiability. A distinction between
endogenous and exogenous variables similar to the concept of causal ordering here
developed was made by Orcutt {1952). For a discussion of the incorporation of the
notion of causality in a system of formal logic, see Simon [1952].

49
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only “necessary” relationships among variables are the relationships of
logical necessity that hold in the scientist’s model of the world, and
there is no guarantee that this model will continue to describe the world
that 1s perceived.

" Even this narrower notion of causality—that causal orderings are
simply properties of the scientist’s model, properties that are subject
to change as the model is altered to fit new observations—has been
subjected to criticism on two scores. First of all, the viewpoint is be-
coming more and more prevalent that the appropriate scientific model
of the world is not a deterministic model but a probabilistic one. In
gquantum mechanies and thermodynamics, and in many social science
models, expressions in terms of probabilities have taken the place of
completely deterministic differential equations in the relationships con-
necting the variables. However, if we adopt this viewpoint, we can
replace the causal ordering of the variables in the deterministic model
by the assumption that the realized values of certain variables at one
point or period in time determine the probability distribution of certain
variables at later points or periods.

The second criticism is in one sense more modest; in another, more
sweeping. It has already been alluded to above. Tt is simply that “causa-
tion” says nothing more than “functional relationship” or “interde-
pendence,” and that, since “causation’” has become encrusted with the
barnacles of nonoperationalist philosophy, it is best to abandon this
term for the others.

In view of the generally unsavory epistemological status of the notion
of causality, it is somewhat surprising to find the term in rather common
use in seientific writing (when the seientist is writing about his science,
not, about its methodology). Moreover, it is not easy to explain this
usage as metaphorical, or even as a carry-over of outmoded language
habits. For, in ordinary speech and writing the causal relationship is
conceived to be an asymmetrical one—an ordering—while “functional
relationship”” and “interdependence’ are generally conceived as entirely
symmetrical. When we say that 4 causes B, we do not say that B causes
A; but when we say that A and B are functionally related {or interde-
pendent), we can equally well say that B and 4 are functionally related
{or interdependent). Even when we say that A4 is the independent vari-
able in an equation, while B is the dependent variable, it is often our
feeling that we are merely stating a convention of notation and that, by
rewriting our equation, we could with equal propriety reverse the roles
of A and B.

The question, then, of whether we wish to retain the word “‘cause”
in the vocabulary of science may be narrowed down to the question of
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whether there is any meaning in the assertion that the relationship
between two variables in a model is sometimes asymmetrical rather than
symmetrical. If the answer to this question is in the negative, there would
seem to be good reason for abandoning “cause’ in favor of its synonyms.
If the answer is affirmative, the term “cause,” carefully scrubbed free
of any undesirable philosophical adhesions, can perform a useful function
and should be retained.

It is the aim of this chapter to show how the question just raised can
be answered in the affirmative and to provide a clear and rigorous basis
for determining when a causal ordering can be said to hold between two
variables or groups of variables in a model. Two preliminary remarks
may help to clarify the approach that wiil be taken.

First, the concepts to be defined all refer to a model—a system of
equations—and not to the ‘“real” world the model purports to describe.
Hence both Hume’s critique and the determinism-indeterminism con-
troversy are irrelevant to the question of whether these concepts are
admissible in scientific discourse. The most orthodox of empiricists and
antideterminists can use the term “cause,” as we shall define it, with a
clear conscience.

Second, it might be supposed that cause could be defined as functional
relationship in conjunction with sequence in time. That is, we might say
that if A and B are functionally related and if A precedes B in time,
then 4 causes B. There is no logical obstacle to this procedure. Never-
theless, we shall not adopt it. We shall argue that time sequence does,
indeed, sometimes provide a basis for asymmetry between A and B,
but that the asymmetry is the important thing, not the sequence. By
putting asymmetry, without necessarily implying a time sequence, at
the basis of our definition we shall admit causal orderings where no time
sequence appears (and sometimes exclude them even where there is a
time sequence). By so doing we shall find ourselves in closer accord with
actual usage, and with a better understanding of the meaning of the
concept than if we had adopted the other, and easier, course. We shall
discover that causation (as we shall define it) does not imply time se-
quence, nor does time sequence imply causation.

We conclude these introductory comments with two examples of re-
lationships that “common sense” would regard as causal. First, the classi-
cal work of the biologisis Henderson, Cannon, and others on homeostasis
1s replete withreferences to asymmetrieal relationships among the varia-
bles. On thirst, Cannon [1939, pp. 62-66] states: ‘“Thirst is a sensation
referred to the inner surface of the mouth and throat, especially to the
root of the tongue and the back part of the palate . ... When water is
lacking in the body the salivary glands are unfavorably affected. ..
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[They] are therefore unable to secrete, the mouth and pharynx become
dry and thus the sensation of thirst arises.”
The causal chain clearly implied by this statement is

deficiency of water in body lissues—reduction in salivation—dryness of
tongue and palate—stimulation of nervous system (sensation
of thirst).

To this Cannon adds elsewhere:
—sactivity of drinking—restoralion of water conlent of {tssues.

It is difficult to think or write of these functional relationships as
symmetrical, or as asymmetrical but running in the opposite direction.
For example, if there is normal salivation but the saliva is prevented
from reaching the tongue and palate, thirst is produced, but this neither
reduces salivation nor produces a deficiency of water in the body tissues.

Similarly, in economies we speak of relations like

poor growing weather—small wheat crops—increase in price of wheal

and we Teject the notion that by changing the price of wheat we can
affect the weather. The weather is an “‘exogenous” variable, the price
of wheat an “endogenous” variable.

2. SELF-CONTAINED STRUCTURES

The task we have set ourselves is to show that, given a system of
equations and a set of variables appearing in these equations, we can
introduce an asymmetrical relationship among individual equations
and variables {(or subsets of equations and variables) that corresponds
to our common-sense notion of a causal ordering. Let us designate the
relationship by an arrow, —. Then we shall want to construet our
definition in such a manner that A—B if and only if A is a direct cause
(in ordinary usage of the term} of B.

In the following discussion we shall seek mathematical simplicity by
limiting ourselves to systems of linear algebraic equations without ran-
dom disturbances. Later we shall indicate how the concepts can readily
be extended to nonlinear systems, but a discussion of stochastic systems
is beyond the scope of this chapter.

DeFiNiTIoN 2.1: A linear structure 7s a system of linear nonhomo-
geneous equations (cf. Marschak {1950, p. 8]) that possesses the following
special properties:

(8) That in any subset of k equations taken from the linear structure at
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least k different variables appear with nonzero coefficients in one or more of
the equations of the subset.

(b) That in any subset of k equations tn which m 2 k variables eppear
with nonzero coefficients, 1f the values of any (m — k) variables are chosen
arbitrarily, then the equations can be solved for unigue values of the re-
maining k variables.

In particular, a linear structure is an independent and consistent set
of linear nonhomogeneous equations, independence and consistency
being guaranteed by properties (a) and (b).2

Dermvition 2.2: A linear structure is self-contained 4f 4t has exaclly
as many equations as variables {cf. Marschak [1950, p. 7]).

Because of (b), a self-contained linear structure possesses a unique
solution-—there is precisely one set of values of the variables that satis-
fies the equations.

A linear structure can be represented by the matrix of the coefficients
(augmented to include the constant terms) of the equations of the
structure. We have already required that the system be nonhomogeneous
{that not all the constant terms be zero) and that a sufficient number of
variables appear with nonzero coefficients in one or more of the equa-
tions in any subset of the structure.

DeriniTioN 2.3: A linear model 48 the class of all linear struclures that
can be obtained from a given structure by the subsittution of new nonzero
coefficients for the nonzero coefficients of the original structure [without, of
course, violating (a) or (b)].3

With these terms defined we can undertake to introduce the notion
of a causal ordering of the variables, and a corresponding precedence
ordering of the equations, of a self-contained linear structure. We shall

2 It should be noted that Conditions (a) and (b), incorporated in Definition 2.1,
are abgent from the definitions of Hinear structure employed in other chapters. This
slight difference in definition simplifies the exposition and should cause the reader
little difficulty. The relevant theorems on independence and consistency will be
found in Bécher [1907, pp. 43-49}. Condition (a) can be omitted if we exclude from
consideration certain exceptional sets of values of the coefficients of the equation
system; in this case we can develop properties of the system, parallel to those de-
seribed in the present chapter, which hold *“‘almost everywhere'’ (see Koopmans,
Rubin, and Leipnik {1950, p. 82]) in the space of these coefficients.

* Again this definition, for purposes of simplification, is somewhat narrower
than in other chapters.
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then see at once that all the linear structures belonging to the same linear
model possess the same causal ordering. Hence, we shall see that the
causal ordering is determined as soon as we know which variables appear
with nonzero ceeflictents in which equations,

3. Cavusgar, ORDERING

3.1, Consider any subset A of the equations of a linear structure
(alternatively, a subset of the rows of the augmented coefficient matrix)
and the corresponding subset o of the variables that appear with a
nonzero coefficient in at least one of the equations of 4. Let N, be
the number of equations in A, and =, the number of variables in «.
By (a), n. 2 N..If weextend Definition 2.2 to subsets of equations in
a linear structure, then we may say:

DeriniTion 3.1: A subset A of o linear structure 43 self-coniained
if and only if na = Na.

DEeriniTioN 3.2: If n, > N, we shall say that A s sectional [Mar-
schak, 1950, p. 7].

Now suppose that A and B are two subsets of equations of the same
linear structure. We prove the theorem:

THECREM 3.1: Let A be self-contained and B be self-contained. Then
their intersection C' (the set of equations belonging to both A and B) 1s self-
coniained.

Designate by « the set of variables that appear in 4, by 8 the set in
B, and by v the set in C; let A N B designate the intersection of the sets
A and B, and 4 U B their sum (i.e., the set of elements belonging either
to A or to B). Then the theorem statesthatif n, = N, ,ns = N, and
C = ANB,thenn, = N¢.

Proor: Designate by Ns the number of equations in (4 U B), and
by n, the number of variables in (o U 8). Then we have

(31) NA+N3—NC=N.9.

Designate by 7(.ng the number of variables belonging to both o
and 8. Then, similarly, we have for the sets of variables

(3.2) Ra + g — Napy = N -

But by hypothesis we have N, = n, and Ns = ng, while, by (a),
Ns € n, . Substituting these relations in (3.1) we get

(3.3) ﬂg+ﬂ§—Nc=NsSﬂ..



sEC. 3.2} CAUSAL ORDERING AND IDENTIFIABILITY 55

Finally, v is included in (« ) 8) since if a variable is in v it must ap-
pear in C, and hence in both 4 and B. Therefore, n.ng = n,. Em-
ploying this relationship together with (3.2), we get

(34) . 'nasna"i‘nﬂ_n‘r:

whence, combining (3.3) and (3.4) and eliminating identical terms from
both sides of the resulting ineqguality, we obtain

(35) Nc ; TNy .
But since, by (a), n, 2 N, (3.5) implies
(36) Ny = Nc y

which proves the theorem,

DerFiniTiON 3.3: We call those self-coniained subsels of a linear struc-
ture that do not themselves contain self-contained (proper) subseis the
minimal self-contained subsets of the structure.

From Theorem 3.1 there follows immediately

TrEOREM 3.2: The minimal self-contained subsets A; of the equaiions
of a linear structure, and likewise the subsels of variables that appear in
these minimal subsets of equations, are disjunct.

That the subsets of equations are disjunct is obvious from Theorem
3.1. That the subsets of variables appearing in the several minimal self-
contained subsets of equations are also disjunct follows from the observa-
tion that, if this were not so, the sums of minimal subsets with common
variables would contain fewer variables than equations, contrary to
(a). That is, let A and B be minimal self-contained subsets and let '
= A U B. Then, since A and B are disjunct, N¢ = N, + Nz, while
Ty = Mg + Ag — Nanm - But n. = N4, ng = N . Henee neng > 0
implies n, < N, which contradicts (a).

3.2. We can now decompose a self-contained linear structure A con-
taining variables o into two parts: a part A’, which is the sum of all
the minimal self-contained subsets, A’ = 4, U 4, U ... U 4; (containing
variables &' = oo U oo U - .- U ); and a remainder, B. Since the A;
are disjunct, Ny» = 2 N, .Similarly, n, = 2 0., = 2 N, . Hence
N4+ = 1, Le., the number of variables appearing in A’ is equal to the
number of equations in A’ . Further, if B is not null (‘empty’’), we
must have ng > N, ;. otherwise B would be self-contained, contrary to
its definition. Hence, at least one of the variables of o’ must belong to 8.
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It is eonvenient to distinguish three cases:

1. A’ consists of a single self-contained set, which coincides with the
entire structure; i.e., the structure A contains no self-contained proper
subset. In this case B is null, and ‘we may say that the structure is
completely tniegrated.

IT. A’ consists of one or more proper subseis of the structure and B
is not null. In this case we may say that the struecture is causally ordered.

ITI. A’ consists of more than one proper subset of the structure and
B is null. In this ease we may say that the structure is uninfegrated.

In all three cases we shall call the minimal self-contained subsets
belonging to A’ the (minimal) complefe subsets of zero order.

Derinirion 3.4: If in Case Il we solve the equations of A’ for the
unique values of the variables in o', and substifute these values in the equa-
tions of B by (b) this is always possible], the linear structure we oblain is
the derived structure of first order, a self-coniained structure of N g equa-
lions i nEgnay = Ng unknowns. We can now find the minimal self-
contained subsets of the first derived structure, B = B, U B, U -.. UB,,
(complete subsets of first order), and proceed as before, obtaining Case I,
I, or II1. If Case I1 holds, we repeat the process with the derived structure
of second order, and so forth. Since the number of equations in the original
structure was fintte, we must finally reach a derived structure that falls under
Case I or Case IIT,

Derintrion 3.5: The minimal self-conlained subsets of the derived
structure of k-th order will be called the complete subsets of kth order.

3.3. By the process just described we have arrived at a complete or-
dermg of disjunct subsets of the equations of 4, so that 4 = A* U B’
U ... UN, where N, the derived structure of hlghest order, is either
unintegrated or completely integrated. ¥ach of the minimal complete
subsets, of whatever order, reached in the process may be interpreted
in either of two ways. The subset, taken by itself, may be regarded (as
above) as a self-contained structure with as many variables as equations,
the remaining variables having been eliminated by substitution after
solution of the equations of the lower-order structures. Alternatively, it
may be viewed as a complete subset, in which case the variables in ques-
tion are not eliminated by substitution but are regarded as ezogenous
varables, the remaining variables (equal in number to the equations of
the subset) being regarded as endogenous variables. (It will be clear that
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these terms are used in a sense relative to the complete subset of equa-
tions in question.*)

Adopting the latter interpretation of subsets in the derived structures, -
it is clear that each complete subset of first order must contain at least
one variable in o, for if it did not, the subset would be a complete sub-
set of zero order. Similarly, each complete subset of kth order must
contain atleast one variable that appearsin a complete subset of (k — 1)th
order and that does not appear in any complete subset of order less
than (& — 1).

Since the concepts of endogenous and exogenous variables will play
an important role in the following discussion, it will be useful to have for
these terms a definition more formal than that just given.

DerintTION 3.6: If D is a complele subset of order k, and if a variable
z; appears tn D bul in no complele subsel of order lower than k, then x;
is endogenous in the subset D. If z; appears in D but also in some com-
plete subset of order lower than k, then z. is exogenous in the subset D.

From our previous discussion (in particular, the paragraph following
Theorem 3.2) it can be seen that each variable in a self-contained linear
structure appears as an endogenous variable in one and only one com-
plete subset of the structure, that it appears in no complete subset of
order lower than the one in which it is endogenous, and that it appears
in complete subsets of higher order (if at all) as an exogenous variable.
Therefore, there exists a one-to-one correspondence between the com-
plete subsets of equations and the subsets of variables occurring as
endogenous variables in these equations.

We can now employ the distinction between exogenous and endogenous
variables to define a causal ordering of the sets of variables endogenous
to the corresponding complete subsets of equations.

DerFiNiTION 3.7: Let B designate the set of variables endogenous to a
complete subsel B, and lef «v designale the sel endogenous to a complete
subset C. Then the variables of v are directly causally dependent on the
variables of B (8 — ) +f af least one member of 8 appears as an exogenous
vartable in C. We can say also thot the subset of equations B has direct
precedence over the subset C.

‘We have now partitioned the equations of a self-contained structure
into disjunct subsets (the minimal complete subsets of various orders);

4 This usage of ‘‘complete,” ‘“‘exogenous,” and “‘endogenous™ is consiatent with
Marschak’s definition of those terms [Marschak, 1950, pp. 7-8].
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we have similarly partitioned into disjunct subsets the variables of the
structure (the sets of endogenous variables corresponding to the com-
plete subsets of equations); and we have partially ordered these minimal
subsets of equations and corresponding sets of variables by means of
the (isomorphic) relations of direct precedence and direct causal de-
pendence, respectively.

4. ANaLysis oF ExaMpLES

4.1. Our first example is the simple one mentioned in the introduction
to this chapter:

poor growing weather — small wheat crops — increase tn price of whea.

‘We may translate this into the form of a self-contained linear structure
as follows: Let z1 be an index measuring the favorableness of weather
for prowing wheat; z, , the size of the wheat crop; and z;, the price of
wheat. We suppose the weather to depend only on a parameter; the wheat
crop, upon the weather (we ignore a possible dependence of supply on
price); and the price of wheat, on the wheat crop; and we suppose all
relations to be linear. The resulting equations are

(41) ’ ann, = Qu,
4.2) _ an®1 + GnZs = gy,
(4.3) GsTs + Qs = ap .

Equation (4.1) contains only one variable and hence is a minimal
complete subset of zero order, with z; as the endogenous variable.
There are no other such subsets. Solving (4.1) for x; and substituting
this value in (4.2) and (4.3), we get the derived structure of first order,

(4.2a) Ozl = ax — anlaw/an),
{4.3a) AT + aprs = ax .

We see that equation (4.2a) is & minimal complete subset of first
order, with z; as its endogenous variable. Solving (4.2a) for z, and
eliminating x; from the third equation, we are left with a single equa-
tion as the minimal complete subset of second order. Applying Definition
3.7, we may write:

(4.1) = (4.2) — (4.3)

[read: ‘‘(4.1) has direct precedence over (4.2}, and (4.2) over (4.3)"],
and
Tp — Xz — X3

(read: ‘‘z, is the direct cause of xs, and z: of z3”’).
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4.2. A less trivial example, which also shows that our definitions
correspond with common-sense notions of causality, is the structure
whose coefficients are estimated by Girshick and Haavelmo in Chapter
V, pages 107-110. In writing their system we omit the random terms
and employ a different notation for the coefficients:

(4.4) auyit+aisys+aays Yasmtanzs=a10,
(4.5) Gnyit+anys: +any. +aaszs =dsg ,
(4.6} Qs +amnz +asszy=as0 ,
(4.7) Gyt aqsys+aezs + 42y =t ,
(4.8) @s2lfa +-@ssys +as3ze =as0,
(49) AeeZs =Qgo ,
(410 G777 =a70 ,
(4.11) CasZa =0,
(412} QnZy=ay .

Analysis of this structure, which the reader may wish to carry out as
an exercise, shows that there are four single-equation subsets of zero
order: equations (4.9), (4.10), (4.11), (4.12), and one subset of first
order: equation (4.6). The four remaining equations form a single subset
of second order in the endogenous variables i , 2, ¥4, and g5 . In terms
of equations, the precedence relations are

(4.10) (4.12) (4.9) (4.11)

(4.6)

(44), (45), (47, (48)

Interpreting this result in terms of the corresponding sets of variables,
we find that Girshick and Haavelmo are asserting:

1. That food consumption (y,), retail food prices (y2), food production
(¥4), and food prices received by farmers (y;) are interdependent (mem-
bers of the same minimal complete subset of second order) and directly
causally dependent upon disposable income (y,), last year’s food prices
received by farmers (z), time (z), and last year’s disposable income
(2).

2. That disposable income (y;) is directly causally dependent upon
net investment (z;) and last year’s disposable income (z).
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4.3. We present, without interpretation, a final example:

(4.13)  auti + awp®s + aurs + ousTs = oaw,
(4.14) an®s + ants = an,
(4.15) " = an,
{4.16) anty = Ol ,
(4.17)  aazi + aspts + ot + aszs = ag ,
(4.18) oteets + gy = agy ,
(419) anz = amp -

It can be shown that there are three complete subsets of zero order:
equation (4.15) and variable z,, equation (4.16) and variable z; , and
equation (4.19) and variable x, . There are two complete subsets of
first order: equation (4.13) and zs , and equation (4.17) and z, . Finally,

_ there are two complete subsets of second order: equation (4.14) and
x5, and equation (4.18) and z;. In this case each complete subset con-
sists of one equation in one endogenous variable, and we can represent
the precedence and causal partitioning alternatively as follows:

L4'K (4.16) ;19) x\ X3 /‘1
(4.18) (4.14) X7 s

Reordering our equations to correspond with the order of the cor-
responding variables, the partitioning ean also be represented as follows:

X1 Tz Z3 x4 k) Ty rr
(4.19) X 0 0 0 0 0 0
(4.15) 0 X 0 0 0 0 0
(4.16) 0 0 X 0 0 0 0
(4.17) X X x x 0 0 0
(4.13) X x X 0 X 0 0
(4.14) 0 0 0 X 0 x 0
(4.18) 0 0 1] 0 X 0 4

In this table, nonzero coefficients in the matrix are designated by X,
zero coefficients by (. The coefficients of the constant term are not dis-
played.
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4.4, We see from this last representation that ordering the equations
and variables according to their precedence and causal relations places
the matrix in a canonical form that in a certain sense is as nearly triangu-
lar as the structural equations permit. This suggests that calculation
of the causal relations in a structure may have some value in indicating
the optimum arrangement of equations and variables in fixing the se-
quence of computation of their solutions. It would be easy to construct
an electrical computing device which, even for very large structures,
would rapidly locate the complete subsets from this matrix representa-
tion.

The blocks of zeros above and to the right of the main diagonal in the
cancnical form of the matrix show clearly also that our concept of causal
ordering is essentially identical with the concept of unilateral coupling,
employed in connection with dynamical systems.’

4.5. The blocks of zeros in the lower left-hand corner are really acel-
dental properties of the particular partitioning we are studying—that
variables of zero order appear only in equations of zero and first order,
not in equations of second order,

"The causal relation we have defined is a nontransitive relation—
a — 8 and 8 — « does not imply « — v . We may wish to introduce,
among sets of endogenous variables, a transitive relationship meaning
“directly or indirectly caused.”

DerFINITION 4.1: 0 D v {read: “o is a cause of v’} if there evist 6,
Ba, -+, B such that « — By — B2~ -+ — B — v. We may also
speak of a relationship of precedence holding befween the corresponding
subsets of equations; for instance, A 2 C.

5. CavsarLiry In SysTEMs Nor SELF-CONTAINED

5.1. We now proceed to show that it is essential that we assume a
self-contained structure in order to introduce the notion of causal order-
ing, '

Consider the structure used as an example in Section 4.3. Suppose that
we omit equations (4.15) and (4.19) and replace them with

(5.1) . ORELs = ¥go ,
(5.2) T = Ogp .

§ As a matter of fact, the writer originally approached his problem from the
standpoint of unilateral coupling (cf. Goodwin {1947, pp-. 183-184]).
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We then obtain the following causal structure:

X7 Xg X3

N

X6 - Xy

\ |

(*1> %3)

where (z, , 2») represents the complete subset of second order comprising
the variables z; and 7. We sec that we have not only reversed the
direction of causation between x; and x; , on the one hand, and z; and x;
on the other, but have also changed the relation of z; to the remainder
of the structure. Hence we canuot speak of an “internal” causal struc-
ture among the variables of a sectional (not self-contained) structure
apart from the particular selfcontained structure in which it is imbedded.
In our new case the canonical form of matrix is

T3 Ts ol X4 Ts TL T2
(4.16) X 0 0 ¢ 0 0 0
(5.1) 0 X 0 0 0 0 0
{5.2) ¢ 0 X 1] 0 0 0
(4.14) 0 X 0 x 0 0 0
{4.18) 0 0 X 0 X 0 0
(4.13) x 0 0 ] X X X
4.17) X 0 0 x 0 X X

Of the five equations common to both structures, only equation (4.16)
has retained the same order. Moreover, the complete subsets of equations
are associated with subsets of variables different from those before.

5.2. In general, we can complete a sectional structure by adding an
appropriate number of additional equations, and in general we can do
this in a number of different ways. Each of the resulting self-contained
structures is likely to have different causal relationships among its vari-
ables. One way to complete a sectional structure is to specify which
variables are exogenous and to add a sufficient number of equations in
which these exogenous variables alone occur [Marschak, 1950, p. 8.
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G. OPERATIONAL SIGNIFICANCE OF CavusalL ORDERING

6.1. An important objection to our definition of causal ordering re-
mains to be examined—the objection that it is essentially artificial,
since the same set of observations could be represented by different
struetures with different causal orderings of the variables. Consider the
following three sets of two equations each:

(6.1) auth + @y = ap,
(6-2)} {anyx + any: = an ;
(6.3) buin = by,
(6-4)} {anyl + amps = am,

with by = Gy ~ (au/an)ay , b = aw — (0/an)an ;
(6.5) buy = by,

(6.6)} { tutfy = Cm

with ¢ = aw — (Gu/B1)buw .

All three sets of equations are satisfied by precisely the same set of
values of ¥, and ., natnely,

(6-7) Y= bm/bu ’ Y2 = Czc;/azz .

Yet the causal ordering in the three sets is different. Equations (6.1)
and (6.2) comprise a single minimal complete set of zero order. Equa-
tion (6.3) is a complete set of zero order, while (6.4) is a complete set
of first order to which (6.3) is directly precedent. Equations (6.5) and
(6.6) each constitute a complete set of zero order. The first structure is
completely integrated, the second eausally ordered, and the third unin-
tegrated. If the three sets are to be regarded as operationally equivalent,
because each can be obtained from either of the others by algebraic
manipulation without altering the solution, then causal ordering has no
operational meaning.

Closer inspection of the three sets of equations, (6.1)—(6.6), suggests
a possible basis for distinguishing them even though they have an identi-
cal solution. Consider the first pair of equations. Suppose that equation
(6.1) were altered (say, by a change in the constant term or one of the
other coefficients). Then the values of both 3 and ¥ would, in general,
be altered. The same would be true if (6.2) were altered.

Consider next the second pair of equations. Suppose that eguation
(6.3) were altered. Again, both v and ¥, would be changed in value. On
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the other hand, if (6.4) were altered, only ¥, would be affected and
would remain unchanged.

Finally, consider the third pair of equations. Suppose that equation
(6.5) were altered. This would change the value of 3 but not of ¥ .
However, if (6.6) were altered, this would change the value of 3 but not
of Y.

* The principle illustrated by the example above can easily be general-
ized.

TaroreM 6.1: Let A be a self-contained linear structure, let A; be a
complote subset of order k in A, and let A’ be o self-contained linear structure
that is identical with A except for a single equation belonging to A,. (We
assume thal the set of variables appearing in A1 ts unaltered.) Consider the
(unique) solutions of A and A’, respectively. Then (a) the values of all
variables ¢n A thal are neither endogenous variables of A, nor cavsally
dependent, directly or indirectly, on the endogenous variables of A, are
tdentical with the values of the corresponding variables in A’y and (b)
the values of all variables in A that are endogenous in A, or are causally
dependent on the endogenous variables of A, are (in general) different from
the values of the corresponding variables in A'.

Proor: We can solve the equations of a linear structure for the
values of the variables appearing in a particular complete subset A,
by (1) solving successively the complete subsets (starting with those
of zero order) that have precedence over As, and finally (2) substituting
in A, the values of all the exogenous variables appearing in 4, and
solving the equations of 4 for the endogenous variables. Hence, altering
an equation belonging to one of these complete subsets will, in general,
alter the values of the variables in 4, ; but altering an equation in a
complete subset that does not have precedence over 4, cannot alter
the values of the variables in 4. .

6.2. Let us apply this notion to the example used in Section 4.1.
The strueture represented by equations (4.1)-(4.3) might be altered by
changing any one of the three equations, each of which constitutes a
complete subset. . '

I. If (4.1) is altered (e.g., rainfall is increased by sowing carbon
dioxide erystals in clouds), this will also affect the wheat crop and the
price of wheat.

IL If (4.2) is altered (e.g., a drought-resistant variety of wheat is
introduced), this will affect the wheat crop and the price of wheat hut
not the weather.
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ITY. If (4.3) is altered {e.g., a population increase shifts upward the
demand schedule for wheat), the price of wheat will change but not the
size of the wheat crop or the weather.

The causal relationships have operational meaning, then, to the ex-
tent that particular alterations or “interventions’ in the structure can
be associated with specific complete subsets of equations. We can picture
the situation, perhaps somewhat metaphorically, as follows. We suppose
a group of persons whom we shall call “experimenters.” If we like, we
may eonsider “nature’ to be a member of the group. The experimenters,
severally or separately, are able to choose the nonzero elements of the
coefficient matrix of a linear structure, but they may not replace zero
elements by nonzero elements or vice versa (i.e., they are restricted to
a specified linear model). We may say that they control directly the values
of the nonzero coefficients. Onece the matrix is specified, the values of
the = variables in the n linear equations of the structure are uniquely
determined. Hence, the experimenters conitrol indirectly the values of
these variables. The causal ordering specifies which variables will be
affected by intervention at a particular point (a particular complete
subset) of the structure.

We see that, in addition to a language describing the Iinear model,
we require, in order to discuss causality, a second language (a “meta-
language””) describing the relationship between the “experimenters” and
the model. The terms “direct control” and “indirect control” are in
this metalanguage. Thus, in our metalanguage we have an asymmetrical
relationship (> )—behavior of experimenters > equation coeflicients
> values of variables—that must be introduced in order to establish
the asymmetrical causal relationship {(—).

In one sense we have moved our problem from the language of the
original model to the metalanguage. In order to establish a causal or-
dering we must have a priori knowledge of the limits imposed on the
“experimenters’—in this case knowledge that certain coeflicients of
the matrix are zeros. If the causal ordering is to have operational meaning
it is necessary that, within these limits, the “experimenters’” be able
to alter at least some equation in each complete subset in some way.

7. CavsaL ORDERING AND IDENTIFIABILITY

The concept of identifiability has been introduced in Chapter II.
In the present chapter no hint has been given thus far as to the rela-
tionship between identifiability and causal ordering. In fact, however,
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there appears to be a very close relationship between the two concepts,
and it is the task of the present section to deseribe it.$

7.1, In Section 6 we sought an operational basis for the concept of
causal ordering, a basis that would make of the ordering something more
than an arbitrary property of a particular (and arbitrary) way of writing
the equations governing certain empirical variables. We found that we
could provide the ordering with an operational basis if we could associate
with each equation of a structure a specific power of intervention, or
“direct control.” That is, any such intervention would slter the structure
but leave the model (and hence the causal ordering) invariant. Hence,
causal ordering is a property of models that is invariant with respect to
interventions within the model, and structural equations are equations
that correspond to specified possibilities of intervention.

The usual notion of operationalism requires us to associate with each
variable of an empirical system a method (set of operations) for measuring
it. The extended notion introduced in Section 6 requires us to associate
with each equation a procedure (set of operations) for altering its con-
stant term or coefficients. It is by virtue of such procedures that we can
distinguish between “‘structural” and “nonstructural” sets of equations
describing the same set of observations.

But it is precisely this same notion of intervention, and this same
distinction between structural and nonstructural equations, that lies
at the root of the identifiability concept.” As long as structure remains
unaltered, identifiability is not required in order to estimate the param-
eters that are needed for prediction. When a recognizable change in
structure occurs, however, identifiability of at least some of the param-
eters of the structural equations is necessary if correct predictions are
to be made in the new structure. From these epistemological considera-
tions we conclude that the conditions under which the causal ordering
of a structure is operationally meaningful are generally the same as the
conditions under which structural equations can be distinguished from
nonstructural equations, and the same as the conditions under which
the question of identifiability of the equations is meaningful.

¢ In addition to the logieal connection, to be discussed in the text, between
causal ordering and identifiability, it may be of interest to point to a number of
historical connections. Pioneering work on identifiability was done by Ragnar
Frisch {1934], who explored the problem discussed in Section 8.1 below. Other au-
thors in econometries began to use the concept of causality in their writings
without explicit definition; for example, Haavelmo {1944, especially p. 22] and
Wold [1949]. An explicit causal ordering for a special class of cases was introduced
by Tinbergen [1940].

" See Marachak [1950, pp. 8-18], Hurwicz {1950b, pp. 266-273], Chapter I of this
volume, and Section 8 of Chapter II.
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7.2. Parallel with the epistemological relationship just described, we
should expeet to find a mathematical relationship between the two
concepts. In this we are not disappointed.

Identifiability of a linear structure is obtained when certain & priori
constraints are placed on the model. For complete identifiability of a
structure these restraints must preclude the existence in the model of
a different equivalent structure, that is (in linear models), a different
set of equations whose members are linear combinations of the original
equations.®

The simplest basis for identifiability is obtained il we can specify a
priori that certain coefficients appearing in the model must be zero.
But if the jth coefficient in the ¢th equation is zero, then the jth variable
does not appear in the 7th equation. Hence, these specifications may be
regarded as determining which variables appear in which equations. In
a self-contained structure specification of which variables appear with
nonzero coefficients in which equations determines the causal ordering.
{In the present section we shall restrict ourselves to a priori specifications
of the kind just described.)

7.3. The argument just set forth may be restated in a more formal
way, which will perhaps clarify further the operational status of the
terms ‘“‘causal ordering’’ and “identifiability.” An important guiding
principle in the relationship between mathematical models and empirical
data is that a property of a mathematical model cannot be regarded as
reflecting a property of the empirical world the model purports to de-
scribe unless this property is invariant under permissible (operationally
nonsignificant) transformations of the equations specified by the model.

For example, in Newtonian mechanics it is meaningless to ask
whether a body is at rest or in uniform motion in a straight line, for by
a trivial transformation of the reference system the motion of the body
can be transformed from the first state to the second.? It is meaningful

& The definition of identifiability from which this statement is derived (see
Chapter II, Section 3, and Koopmans, Rubin, and Leipnik [1950, Definition
2.1.5.3]) refers to stochastic models. We shall see in Section 8 that the statement
remains valid for an equivalent identifiability concept formulated for nonsto-
chastic models [Marschak, 1950, Seetion 1.3). In either case, the concept of identi-
fiability always refers to a complete structure, whose equations may be a complete
subset (Definition 3.5) of a (stated or unstated) structure consisting of a larger
number of equations. The implications of this fact have not received sufficient
emphasis in the literature on identifiability, and will be elaborated in Section 8.

* This is the classical problem of ‘‘absolute’” versus “‘relative” motion. The
notion of invariance under transformation as a necessary condition for a “‘real”
propetty of & physical system has provided a leading motivation for the develop-
ment of relativistic mechanics and other branches of modern physics. For the
identification problems that arise in classical mechanics, see Simon [£947].
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however, to ask whether the body is accelerated or unaceelerated since
this property is invariant under transformation from one physically
admissible reference system to another.

In the classical theory of systems of linear equations we are interested
in properties of a system that are invariant under certain groups of
transformations of the coefficients of its matrix. In particular, we may
be interested in the solutions of any given syvstem (the sets of values of
the variables satisfying the system). These are invariant under ele-
mentary row fransformations of the matrix.

DErFiniTION 7.1: Elementary row iransformations of a mairiz are those
which (1) interchange rows of the mairix (i.e., reorder the equalions),
(2) add to a given row multiples of another row or rows, (3) mulliply a row
by a nonzero scalar. These all amount to premultiplication of the coefficient
matriz by a nonsingular matriz.’® The group of transformations thus
generated we will call the R-transformations.

Durintrion 7.2: Any two coefficient matrices that are obtainable from
one another by R-transformations we will call R-equivalent.

Concentration of interest on those properties (e.g., solutions) that
are invariant under the group of R-transformations has led to the re-
placement of the notion of causality by the notion of mutual depend-
-ence. For, given a (consistent and independent) set of & linear equations
in = (n 2 k) variables, then, in general, each variable belonging to any
subset [Bécher, 1907, p. 46] of k variables can be expressed as a function
of the remaining (n — k).

We have seen that the causal ordering in a linear structure is not in-
variant under the group of R-transformations (cf. Sections 6.1, 6.2).
Hence, to give invariant meaning to this causal ordering we must restrict
ourselves to a more limited group of transformations than the R-trans-
formations.

DeriniTION 7.3: We say that two coeffictent matrices are structurally
equivalent (S-equivalent) if the second can be obtained from the first by pre-
multiplication by a nonsingular diagonal matriz (i.e., by row transforma-
tions of the third type only). The group of transformations. thus admitled
we shall call the group of S-transformations.

It is clear that if only the S-transformations are admitted (multiph-
cation of each equation by a constant), the positions of the zero and

10 Albert {1941, pp. 24, 43].
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nonzero coeflicients eannot be affected. That is, the causal ordering of a
linear structure and the identifiability of its several equations are in-
variant under the group of S-transformations but not under the wider
group of E-transformations.

Now the operational signifieance of distinguishing between these two
groups of transformations has already been suggested in Sections 6.2
and 7.1. If with each equation of a structure we associate a specific
power of intervention, then, under S-transformations, this one-to-one
correspondence between equations and interventions will not be dis-
turbed—each equation will retain its identity. Bat, under R-transforma-
tions of types (1) or (2), the equations will be scrambled and combined.
Suppose that the jth and kth equations belong to different complete
subsets. If the jth equation is interchanged with the kth, the inter-
ventions will have to be correspondingly reordered ; while if the jth equa-
tion 1s replaced by a sum of multiples of the jth and kth, the kth power
of intervention will now not be associated with a single equation but
with both the jth and the kth.

The definition of identifiability implies that a linear structure is com-
pletely identifiable if and only if the a priori restrictions on the mode!
(e.g., the zeros of the coefficient matrix) are such as to permit only S-
transformations upon the matrix. If the identifiable structure is self-
contained, there will then be a unique causal ordering associated with
it, and this crdering will be invariant under any transformations per-
mitted by the a priori restrictions.!

8. IDENTIFIABILITY IN COMPLETE SUBSETS

The relationship, just explored, between causal ordering and identi-
fiability casts some light upon the conditions under which the coefficients
of a structure can be determined from data in the case of nonstochastic
models. First, some preliminary explanations are necessary.

8.1. We suppose that we have a large number of observations of the
simultanecus values of n variables entering in a linear model. Each ob-
servation may be regarded as a point in an n-dimensional space whose
coordinates are the values of the n variables. We suppose, further, that
the model specifies k& equations (¢ < =) which are assumed to govern

11 On the other hand, the causal ordering may be defined even if the structure
is not completely identifiable. Since the causal ordering depends only on which
subsets of variables appear in which complete subsets of eguations, it will also
be invariant over the group of B-transformations upon the equations of any com-
plete subset.
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the behavior of the variables; any single observation must satisfy the
k equations. Under what conditions will the observations be sufficient
to determine the unknown eoefficients of all & equations, that is, the
unknown structure within the model?

The answer to this question can be obtained from geometrical con-
siderations. If each observation is to satisfy all the equations, all observa-
tions must lie in a hyperplane of not more than (n — k) dimensions.
This hyperplane must be the intersection of the & (n — 1)-dimensional
hyperplanes representing the t equations. (For example, if there are
three variables and two equations, each equation will be represented by
a plane, and all observations will lie on the straight line that is the inter-
section of the two planes.)

Now if the observations do not lie in a hyperplane of fewer than (n
— k) dimensions, the criteria for identifiability of equations that have
been derived for linear stochastic models® are also sufficient to assure
unique determination of the coefficients of these equations in the present
nonstochastie case. For a model satisfying these criteria restricts trans-
formations of the equations to the group of S-transformations (which
do not affect the location of the planes represented by the eguations),
and henee only one set of k admissible hyperplanes can intersect in the
(n — k)-dimensional hyperplane defined by the observations. That is
t0 say, any other set of k (n — 1)-dimensional hyperplanes intersecting
in the same (n — k)-dimensional hyperplane must eonsist of linear com-
binations of the original set, and this possibility is ruled out by the a
priori restrictions, specified by the model, that produce identifiability.

However, if the observations are “degenerate’ [i.e., lie in a hyperplane
of fewer than (n — 1) dimensions}, it may be impossible to determine all
the coefficients of the structure. Henee, to insure the possibility of de-
termining these coefficients we must require that the variables not be
subject to any equations in addition to those of the structure.?

8.2. We shall now see how a knowledge of the causal ordering of a
set of variables can be used to help determine whether the coefficients
of a linear structure governing these variables can be determined. In
the discussion of criteria for identifiability of a structural equation by a
linear maodel, given in Chapter IT and in Section 4.4 of Chapter VI,
a necessary order condition and a necessary and sufficient rank condition
for identifiability are derived. For simplicity, in the following discussion

12 Chapter II, Section 4; Chapter VI, Section 4.4 and Appendix A.

1* This requirement is « sufficient, but not a necessary, condition for determi-
nacy. If the a priori restrictions are more than the minimum required for identi-
fiability, determinacy may be present even if the variables are subject to addi-

tional, unknown restrictions. The probiem under discussion here is the question
of “confluence,” first studied intensively by Frisch [1934].
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we shall consider only the order condition. The exposition would be
considerably complicated, and the results not materially altered, if the
rank condition were included as well. In the following theorem we re-
state the order condition, which, in view of the discussion of Section 8.1,
applies also to the present nonstochastic case.

TareoreM 8.1: In a linear model with a priori restrictions in the form
of exclusions of variables from egquaiions, a necessary condition for the
identifiability of the k-th equation of a structure A consisting of m equalions
in n variables is that at least (m — 1) of the variables in A be excluded
Sfrom the k-th equation.

It follows immediately that, if A is a seli-contained structure, the only
equations belonging to it that are identifiable are those containing a
single variable (i.e., the equations that constitute complete subsets of
zero order). Hence, the prospects of determining the coefficients of a
self-contained structure (unless it is made up entirely of one-variable
equations) are nil as long as all observations are restricted by the entire
system of equations. In faet, in a nonstochastic structure, repeated ob-
servations could in this case only produce the same set of values for all
variables that was obtained in the first observation. This suggests that
we shall need to intervene (see Section 6.2) to “relax” certain of the
relationships in order to obtain observations adequate for determining
the coefficients of the remaining equations.

In a self-contained structure A consider an identifiable complete sub-
set S of k equations in n variables. [By Theorem 8.1, no equation of S
contains more than (n — k + 1) variables.] If we can produce a set of
observations of the variables that satisfies these k equations, and no
others independent of these, then we can determine the coefficients of
8. Now let us add to S any number of additional equations of A which
either (1) belong to complete subsets of the same or higher order than
S, or (2) do not contain any of the variables of S. Designate by S’ this
structure (which includes 8). Then- the equations of § also satisfy the
order condition of identifiability in this new system. For the number of
variables in 8’ must exceed the number of variables in 8 by at least the
number of equations added [by (a)]. None of these new variables appear
in the equations of S. Therefore, the equations of S still satisfy the
condition of Theorem 8.1 and hence, as far as the order condition is
concerned, are still identifiable in S’. We have proved

TrrEoREM 8.2: If each equation of a complele subset S of a linear struc-
ture A is identificble in that subset, il olso satisfies the order condition of
identifiabilily in the larger set S’ that is formed by adding to S any equalions
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of A which either (1} belong to complete subsels of the same or higher order
than S or (2) do not contain any of the variables of S.

By virtue of this theorem we see that in order to permit the determina-
tion of the coefficients of an identifiable complete subset of equations we
need to relax, at most, the equations that are precedent to this subset.
This theorem makes clear the point, referred to in footnote 8, that identi-
fiability has reference to complete subsets of equations.® As a matter of
fact, the condition of Theorem 8.2, while sufficient for the preservation
of the order condition, is not necessary. Without pursuing the matter in
detail, we may illustrate the situation with an exampte. Consider a com-
plete subset S of k equations in & endogenous and m exogenous variables.
Suppose the m exogenous variables to be endogenous to a complete
subset T' (of lower order of precedence) of m equationsinm + p (p 2 m)
variables. Then it is easy to see that, if an equation of S is identifiable
in §, it is identifiable in the system consisting of S and T together. To
guarantee that the order condition of identifiability will be satisfied
when we add new equations to an identifiable complete subset we need
merely make sure that we add as many new variables as equations.

8.3. The rationale of the identifiability concept with reference to a
complete subset A, of a self-contained structure A would appear to be
the following. We suppose the equations of A, of order k to be identifiable
in Az, and we wish to determine their coefficients. All the variables of
A of order less than k that appear in A4, are exogenous variables relative
to A:. We now suppose that these variables can be arbitrarily varied
(by relaxing the structural equations of order less than k) to produce &
set of observations of the highest dimensionality consistent with the
relations of Ax. This set of observations, together with the condition
that the equations of A, be identifiable, permits us to determine the
coefficients.

It is to be noted that we have here again implicitly introduced the
notion of an experimenter who, by his direct eontrel over the parameters
of the equations in A of order less than k (or by selection of observations
provided by “nature”), can bring about independent variations in the
variables that are exogenous to A,. If this procedure is operationally
meaningful, the experimenter, confronted with a self-contained structure

"4 In the stochastic case discussed in Chapter I, Section 3, and in Koopmans,
Rubin, and Leipnik [1950, Definition 2.1.3.2] this is reflected in the stipulation
that structures are regarded as equivalent only if they give rise to identical dis-
tributions of the observations for all values of the ““‘exogenous’’ variables, i.e.,
exogenous with reference to the subset considered (Definition 3.6 above).
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A, can partition the structure into its complete subsets and, isolating
each of these from the whole, proceed to determine its parameters. This
seems to correspond exactly to the procedure of a physiologist who (in
the example used in the introduction) prevents an animal’s saliva from
reaching the palate and in this way explores the thirst mechanism.

In the stochastic case nature may provide some of the necessary vari-
ability of exogenous variables that eseape experimental control. In fact,
the discussion of identifiability of complete structures in the stochastic
case is meaningful only if sufficient independent variation of “exogenous”
variables is provided by nature.!®

9, CAavusaLITY IN NONLINEAR SYSTEMS

Thus far we have considered only the case of linear, nonstochastic
structures. In this chapter the problem of causal ordering in the stochas-
tic case will not be considered, but a few comments may be made on the
nonlinear case.

We consider a system of functional refations of the form

(9.1) ¢i(x-_."',17n)=0 (i=1:°“rn)o

We assume further that the system has, at most, a denumerably in-
finite set .of solutions. Now we can again decompose the system into
complete subsets of equations of various orders, such that each subset
contains as many variables not appearing in subsets of lower order as
it contains equations. If appropriate conditions are imposed on our
system, this decomposition will again be unique.

In our linear structure we assumed that an experimenter could di-
rectly control the parameters appearing in the equations. In the present
ease we assume that an experimenter can relax or modify any equation
or set of equations in the system. In this way we have the same general
relationship as in the linear case between the problem of defining the
causal ordering and the problem of identification.

10. CoxcLusioN

In this chapter we have defined a concept of causality that corre-
sponds to the intuitive use of that term in scientific discussion. Causality
is an asymmetrical relation among certain variables, or subsets of vari-
ables, in a self-contained structure. There is no necessary connection
between the asymmetry of this relation and asymmetry in time, al-

15 See footnote 13 above and also Chapter I1, footnotes 7 and 13, from which it

will be clear that “‘exogencus™ as used in the sentence to which this footnote is
appended corresponds to ‘predetermined’’ in the context of Chapters II and V1.
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though an analysis of the causal structure of dynamical systems in econo-
metrics and physics will show that lagged relations can generally be
interpreted as causal relations.

In models specifying which variables are excluded from which equa-
tions, the concept of causality has been shown to be intimately connected
with the concept of identifiability, although the eonditions under which a
self-contained structure possesses a nontrivial causal structure are some-
what weaker than the conditions under which it is completely identi-
fiable.

A study of the operational meaning of the causal ordering (or of the
zoncept of ‘“‘structural” equations) appears to require a metalanguage
that permits discussion of the relation between the structure and an
experimenter who has direct control over some of the parameters of the
stracture. As the brief discussion of the nonlinear case implies, the dis-
tinction between parameters and variables can be disregarded if the
former are regarded as exogenous variables (determined by a larger
system) with respect to the latier. In this case the experimenter must
be regarded as being able to relax or alter particular equations in this
larger system.
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1. INTRODUCTION

The marginal propensity to consume and its companion, the mul-
tiplier, are of central importance in modern theories of macro-
economics. The intense interest in these parameters derives largely
from the importance that modern theories (and many older ones too)
attach to the rate of investment as a primary factor in determining the
levels of income and employment. In some theories investment is con-
sidered as an autonomous variable, an impressed force (e.g., Schumpe-
ter’s theory of innovations). Other theories, while operating with the
notion of induced investment, imply nevertheless that current invest-
ment is, in part at least, an autonomous variable, its main determinants
being such “external” factors as growth of population, new inventions,
wars, ete., or past values of some other economic variables, such as
profit, sales, or capital accumulation. It is in line with these ideas that
attempts to derive, statistically, the marginal “propensity to invest”
apparently have met with little success. The current view on the subject
is probably well expressed in the following statement by Alvin H.
Hansen: “Thus, the statistical data during the last two decades tend to
support the thesis that the active dynamie factor in the cycle is invest-
ment, with consumption assuming a passive, lagging role.””? Qualifying
this statement somewhat, he continues: “For the mest part, spon-
taneous expenditures—expenditures not caused by a prior rise in income

t Some of the methods discussed below were developed in conrection with a
study of the demand for agricultural products undertaken at the Department of
Economics, The University of Chicago. The author is indebted to his colleagues
at the Cowles Commission for many helpful suggestions. This chapter is reprinted
from the Journal of the American Statistical Association, Vol. 42, March, 1947, pp.
105-122,

* Hansen [1941, p. 50].

75
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—are likely to be made on investment goods or upon durable consumers’
goods, but not upon other forms of consumption.

“It does not follow, however, that all investment is spontaneous.
Much of it is, in fact, induced. 1t is, however, quite impossible to deter-
mine statistically what part is spontaneous and what part is induced.”*
Many economists would agree with Paul A. Samuelson’s statement that
“In behavior it [i.e., investment] is sporadic, volatile, and capricious.
Tts effective determinants are almost completely independent of cur-
rent statistical factors (level of income, ete.).””

If this is the current view on the role of investment, it is somewhat
surprising to find that current attempts to derive statistically the
marginal propensity to consume approach the problem by correlating
consumers’ expenditures with income.® This procedure is inconsistent
with the view that investment is the autonomous determinant of in-
come. We should, instead, take the regression of income on tnvestment,
to obtain the multiplier, and from this estimate of the multiplier we
should derive the marginal propensity to consume. This idea, I am
sure, is not new, but it might perhaps be useful to set down the argu-
ments involved in somewhat more rigorous terms. I shall also give some
numerical results, as illustrations.

2. Egrimation oF THE CoNsuMPTION FUuncTioN WHEN INVESTMENT
Is AN AUTONOMOUS VARIABLE

In this section we shall be concerned with the following observable

time series:

¢; = consumers’ expenditure, in constant dollars per capita,

y: = disposable income, in constant dollars per capita,

2, = investment expenditures, in constant dollars per capita.
The term investment, as used here, is defined as the difference between
disposable income and consumers’ expenditure. (In terms of current
statistical measurements by the U.8. Department of Commerce, in-
vestment, as defined here, would be equal to private net investment
minus corporate savings plus Government deficits. Cf. Section 4 below.)
This means that we impose the exact relationship

(2.1) Ye=ci+ 2.

3 Hansen [1941, pp. 62-63].

1 Author’s remark.

6 Samuelson [1943, p. 41]. ]

¢ See, for example, Smithies [1945, pp. 4-6], Mosak [1945, p. 44], and others, too
numerous to be mentioned here,
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We assume further that the consumption function is a linear function
of disposable income, but that this function is subject to random shifts.
Let this function be

(2.2) € = oays + 8+ u,

where « and § are constants, and u, is the random element in consumers’
behavior, The problem is to estimate the true values of o and 8, by
means of g certain number of observations of the time series ¢, , ¥, , and
z; . The u’s are not ohservable. :

The model, as it stands, is not complete. It does not determine the
levels of inecome, consumption, and investment, even if we knew the
true values of & and 8. There are three variables, y, ¢, z, and only two
equations, (2.1) and (2.2). For the same reason the model does not as
yet tell us how to proceed statistically in order to estimate « and 8.
The model, as it stands, does not determine how the joint probability
distribution of the observable variables ¢; and y. depends on « and 8,
and therefore does not determine the appropriate type of estimation
formulae to be used. It is necessary to complete the model in such a
way that the problem of estimating « and § becomes a well-defined
statistical problem. For this purpose we add the following assumptions:

{a) The random variable u, has expected value &(u,) = 0, and vari-
ance 8(u}) = of for every value of {. The u’s are serially uncorrelated,
ie., 8{uu,_,) = 0forr # 0.

{b) The time series z, {t = 1, 2, ---) is autonomous in relation to
¢, and y, . This condition is fulfilled if either

(b.1) the sequence z; is a sequence of given numbers, in which case
automatically &(zu;) = z:8(u.) = 0, by (8), or

(b.2) each z, is a random variable which is stochastically independent
of u, . k

If assumption (b.1) is adopted we shall impose the condition that

1 ‘=EN 1 t=N 2
2.3 im m,, = lim — (z —— D). &) = M
( ) Now N—w N fmal ‘ N g ‘

where ., is a positive, finite number. Therefore
(2.4) Nm,,—» = as N - co.
Similarly, if assumption (b.2) is adopted, we shall assume that

1 =N 1 fiv 2
2.5 lim — ( - - ) == filyy
@) plim ¥ =~y & ™
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where #i,, is positive and finite.” These assumptions are used in the

analysis of the large-sample properties of the estimates discussed below.
Let us assume that conditions {(a) and (b.1) are fulfilled. And consider

either one of the following two relations derived from (2.1) and (2.2),

(26) a + 8 + U
. = -4
o l—ctl l—a 11—«
1 B U
2, = .
@7 Ve Attt .

Under the assumptions made, each of these two equations satisfies the
conditions of the Markoff theorem on least squares, when z, is con-
sidered as the independent variable.® In the following we shall use the
moment notations '

(2.8) Mpy = — f(w: : ')s:sz) (q: - m)

N tal N L]l

Lol

(2.9) = F g;p,.

Using well-known formulae from ordinary regression theory, and writ-
ing b. u. est. as an abbreviation for “best unbiased estimate,”? we can
then make the following statements:

Mes

(2.10) = b,u. est. of
M., l—«
(2.11) ¥ b est. of
m,, l—a
MMy == Mgy
(2.12) —_— = b.u. est. of
Mg 1—a

7 “‘plim” means ‘‘the probability limit of.”” A statistic Ty, say, calculated from
a sample of N observations, is said to have the probability limit 4 if the proba-
bility of | Tw — A | > € approaches zero when N approaches infinity, for every
fixed value of ¢ > 0. A statistic Ty having this property is said to be a consisfent
estimate of A, or to converge stochastieally to A.

% See, e.g., David and Neyman [1938].

* An estimate ig said to be unbiased if its expected value is equal to the trae
parameter. An estimate is said to be a “‘best unbiased’” estimate if its variance is
smaller than that of any other unbiased cstimate that is linear in the random
variables involved.
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We also have

N anmxl_m’yz R , . Gyl
(2.13) s*= = an unbiased estimate of .
N-2 m (1—-a)?

Under assumption (2.3) these estimates are comsistenf, that is, any
one of the estimates (2.10)-(2.13) has the property that the probability
of the estimate deviating more than an arbitrary e from the true
parameter approaches zero as N approaches infinity. Since « and 8
are continuous functions of 1/{1 — «) and /(1 — «) when « # 1, we
also know that the estimates, & and 8, of « and 8, derived® from (2.10)°
or (2.11), and (2.12), will have the following properties:
mez

(2.14) @ = — = cons. est. of «
My,

mﬂlme - mczmy

= cons. est. of B.

=)

(2.15)
, My,

The “estimates” of a and 8 obtained by the commonly used pro-
cedure of taking the least-squares regression of ¢, on y, do not possess
this property. Let us denote these “estimates” by e and b, respectively.
Then we have

m
(2.16) a=—
My
@.17) b= My W, — MeyMy ]

muv
These “‘estimates” a and b are not consistent estimates of o and 8.

® Tn the present model, as well as in the model discussed in fection 4 below, the
problem of obtaicing estimates of the structural coefficients a and 8 from the re-
gression coefficients in (2.10) or (2.11) and {2.12) happens to be particularly simple
because we have exactly two independent equations defining the estimates of «
and g, namely (2.10) and (2.12), or (2.11} and (2.12). [(2.10) and (2.11) give identi-
cal estimates of «.] In more general systems of structural equations the situation
may be much more complicated: There may be more independent eguations of
the type (2.11)-(2.12) than there are structural parameters, or there might be too
few such equations (as, e.g., in Section 3 below, if ¢, iz not observable). In such
cages different, and—in general—much more laborious estimation procedures are
required. For further discussion on this point, see Chapter VI of this monograph;
in particular, Section 4.7.
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This is seen as follows. Using (2.1) and (2.2) we obtain
am., -+ (1 + a)mzu + My

M+ 2Muu + Moy

(2.18) a =

From our assumptions it follows that m., — 0 and m,, —> ¢2 as N — .
Thus, for sufficiently large samples, the statistic ¢ approaches, sto-
chastically, the limit

a.
a -t —
M2z
(2.19) pima=————>a when 0 < a <1
N~ u
142
m‘l

Similarly, b will approach the limit

Ty _
ﬁ —_ m:
(2.20) plimb =————— < @8 when #%,> — 8.
N=soo ﬂ’u,!
1+ —
L PT

Suppose now that we substitute assumption (b.2) for (b.1), letting
the z's be random variables in repeated samples. Then the exact condi-
tions of the Markoff theorem are no longer fulfilled. But under assump-
tion (2.5} all the statements above concerning consistency and limit
values of the estimates remain valid.

Thus, we reach the following conclusion: If investment, z,, is an
autonomous variable and if 0 < « < 1, m, > —g, the least-squares
regression of ¢, on y, leads to an “estimate,” a, of a that has a systematic
positive bias, and an “estimate,” b, of § that has a systematic negative
bias. If we believe that investment, 2., is an autonomous variable we
should rather use, in that case, the consistent estimates (2.14) and
(2.15).

Confidence limits for the estimate of « by (2.14) may be derived in
the following manner. Let us assume that the distribution of the w’s
is approximately normal and that the 2’s are not random variables.
Then the ratio

2.21) ¢ =
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has the “Student’’ t-distribution, with N — 2 degrees of freedom.
Choosing a certain level of significance, say 5 per cent, we obtain confi-
dence limits for 1/(1 — «). From these limits we can then derive confi-
dence limits for o itself although, admittedly, this is not the only
possible way of obtaining such confidence limits. The choiee of confidence
interval always depends, to some extent, on the type of statement one
wants to make about the unknown parameter. (E.g., one might be more
anxious to make a correct statement in the case where o is near to 1
than if « is smaller.)

3. ErrEcTs orf INDUCED INVESTMENT

Suppose now that the hypothesis of investment, z, , being autonomous
is not true. Suppose that, instead, the variable z, consists of two parts,
one which is related to current income, and another, g, say, which is
autonomous. Assuming linearity, this alternative can be expressed as
follows:

(31) Z¢ = ¢ + (Ky‘ + A + !):)-

Here the expression in parentheses represents the behavior of those
investors whose investment policy depends on current income, v, .
x and A are eonstants, while v, is a random element such that &(»,) = 0,
&(v}) = oF , for every value of f, and also E(vw.—,) = 0, (.} = O, for
r # 0. u, and v, may, however, be correlated, that is, &(uw.) = ou
may be different from zero. We shall assume that the ¢’s satisfy a con-
dition of the type (2.3). Thus #,, is obtained from (2.3) by substituting
g for 2.

Suppose, first, that the series g, could actually be observed. Then one
could obtain consistent estimates of «, 8, «, and A, by the following
procedure. From (2.1}, (2.2), and (3.1) we derive

A 1~ 1 —~
(3.2) ¢ = b q‘+a+( x).3+am+( Kz,
l—a-—« I —a—« 1 — o —x
1 B+ U -+ v
(3-3) Y = q;+ + .
l—a—x l—a—x  1l—a—«

Under the assumptions made, these equations satisfy the requirements
of the Markoff theorem on least squares, when ¢, is taken as the inde-
pendent variable. If we assume that the sequence ¢, is a sequence of
constants, we therefore have
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Micg

(3.4) — = b.u. est. of
Myq —a— K
(3.5) s b est. of
Mgq . l—a—x«
MggMe — MM, A 1-—
(3.6) i Mes = b.u. est. of zr-w + ©)8
Myq l1—a—«x
m, - m, A
3.7) oy T T _ o est of —
Migq —a — &

These estimates are consistent. We therefore also have the solutions

me, .
(3.8) — & cons. est. of e,
Myq
— M — m,
3.9 T d ® = cons. est. of «,
Myq
m, — m
3.10) o T = ¢ons. est. of 8,
Myq
My — m) - ( - m, — :
(3.11) el : i 0 T M)y = ¢ong. est. of A.

Myq

It will be observed that expressions (3.8) and (3.10) are analogous to
{2.14) and (2.15).

In Section 2 we compared the results, ¢ and b, of the least-squares
regression of e, on y. with the consistent estimates, & and 3, under the
assumption that z, was autonomous. We found that a¢ and & were not
consistent estimates of o and 8. Now, if a part of z, is induced, the
formulae (2.14) and (2.15) will, of course, not give consistent estimates
either, the consistent estimates in that case being given by (3.8) and
{3.10). It is of some interest to evaluate the large-sample bias that
would result if we were to apply (2.14) and (2.15) in the present case,
and to compare this bias with the large-sample bias involved in using
(2.16) and (2.17). Let us consider, in particular, the estimates of «.
Denote by a; the “estimate” of « given by (2.14) if z, is defined by
(3.1). And let a; be the corresponding “estimate’” obtained from (2.16).
Using (2.1), {2.2), and (3.1), and the properties assumed for the random
variables involved, we find
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- - m‘t
plim a, = plim —
Now N—ow My:

(3.12)
_ a(l - a)(ﬁﬂcr + o'vz) + £(1 — K)o, 4+ K(]. —a—x- 2“‘)“uv
(1 — a)(igg + 0.0 + x0u? + (1 — & + &)owr
plim 2, = plim L
@313 " N T

alffigg + 0, + (1 —x)o® 4 (1 - x + a)ous
(’T’qq -+ 0'52) 4+ 204 + 0.?

It is seen that neither of these expressions is, in general, equal to a.
The bias depends on the unknown parameters. If we have some a
priori knowledge about some of the parameters we can make more
definite statements about the bias. Thus, if we assume that 0 < « < 1,
0 <k <1,0< (1 —a—«) <1,andthat o,, > 0, we find that the bias
of both (3.12) and (3.13) will be positive. If « is small compared with
a, and oy, also small, (3.12) will give smaller bias than (3.13), and so
forth.

4. A More Expricrtr MobpEL

In Section 2 we defined investment z; in such a way that y, = ¢, + 2. .
Before making a deciston upon the use of this z, as an autonomous vari-
able, it might be worth-while to examine its content in terms of current
statistics of the gross national product and its components.

In the terminoclogy of the U.8. Department of Commerce, the gross
national product and disposable income are defined as follows:"' (For
our purpose here the data should be interpreted as “per capita, in
constant dollars.’”)

Gross national product = Government expenditures (excl. transfer
payments) 4+ gross private capital formation 4+ consumers’ expenditures.

Disposable income of individuals = gross national product — (total
business taxes + personal taxes -+ employment taxes — transfer pay-
ments) — (depreciation and depletion charges + capital outlay charged
to current expense + income credited to other business reserves — re-
valuation of business inventories + corporate savings).

The total of the five terms in the last parentheses might be termed
“gross business savings,” or “withholdings.”” From these definitions it
follows that disposable income (y;) — consumers’ expenditures (¢,) = z,
= {Government expenditures 4+ transfers — all taxes + gross private

1 Bee, e.g., Survey of Current Business, May, 1942, p. 12,
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capital formation} — gross business savings. Denoting the total of the
four terms in the last parentheses above by z., and denoting gross
business savings by r, , we have

(4.1} Ye — € = Z¢ = ¥y — To.

The quantity z; might be called ‘“‘gross investment.” Gross invest-
ment is, therefore, here defined as gross private capital formation plus
Government net deficit. It might now be argued that it is this ‘“gross
investment” which is the exogenous, “dynamic” element, rather than
z;. (That is, one might say that z, is composed of two parts, one, x,,
which is autonomous, and another, —r, , which is induced.)

To reach a complete model under this hypothesis one has to intro-
duce an additional hypothesis concerning the determination of r, .
Here there might be several possible alternatives. One might, for ex-
ample, think of r, as being a function of (x, + ¢;). [The quantity
(x: 4 ¢} could be called the “gross disposable income” of the private
sector of the economy.] Another alternatiye would be to consider r, as a
function of profits, accumulated business savings, ete. As an illustration
of the methodological problems involved in dealing, statistically, with
such models let us here adopt the hypothesis that 7, is a linear function
of {z. + ¢.). This leads us to the following model:

(4.2) ¢ =ay.+ 8+ u

(4.3} re=plce+x) + v+ w,
{4.4) yr=ce+z.—n17

{4.5) T, = an autonomous variable,

Here (4.2) is a repetition of (2.2), while (4.3) is the “business-savings”
equation. ¢ and » are constants to be estimated, w, being a nonob-
servable random variable. We assume that &(w,) = 0, §(w}) = o5, , and
Blwap,_.) = 0, 8(uaw,_;) = 0, for r = 0. We do not, however, assume
that w, and w, are necessarily independent. The sequence =,
(t = 1,2, .--) is assumed to fulfill a condition of the type (2.3).

Because of (4.4) and (4.5) there are really only two “endogenous”
variables involved. We may take these two variables to be ¢; and v, .
Solving the system for ¢, and y, we obtain

ol = w) B~ av U — oy
46) ¢ = ‘
“o e 1_(1_F)ax+1-(l—p)a+1_(1_#)‘:‘
47 yo=—a# (A~ w8 —» (1—pu—w

I-Q-we T LhoO—me 1=
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Under the assumptions made, both of these equations satisfy the re-
quirements of the Markoff theorem on least squares, ifz, (¢ = 1,2, ---)
is considered as a sequence of constants. Hence we have

-~ Mes 1 -
(4.8) Ay = = b.u. est. of —:x—(—i)——
ez 1-(1— we
~ z 1 —
(4.9) 4, = Do b.u. est. of —(——L
Mzs 1 - (1 - u)a
{4.10) Deallle — Motz _ b.u. est. of _ Bz
Mz 1 —(1 — we
Mes — M s 1-—- -
(4.11) Ty — T = b.u. est. of —(-———M—-)-ﬁ-——-—-'-’ .
Maiz 1- (]- - »u)a

These equations may, in turn, be solved, to obtain estimates, &, §, i, #,
of the structural parameters e, 8, u, v, respectively. These solutions are

(4.12) & = =

My s
(4.13) o Dl T ey
' Miyz

My

4.14 i=1——
( ) g Moz + Maa
(415) s = m"(m‘ + mz) - (mcz + m,,)m, ,

mCI + mzz

In a similar manner we might estimate o’ , ¢}, and o., . It will be
noticed that the estimation formulae above are very similar to those of
Section 3, although the present model has a different economic meaning.

If, as assumed, Nm., — = as N — =, all the estimates above are
consistent, by the same type of argument as that of Section 2,

An estimate of a parameter is in itself of little practical value unless
it is accompanied by some measure of reliability. What we want is a
“eonfidence region’’ for the unknown parameters: that is, if we consider
all possible simultaneous values of the parameters as points in a
parameter space, we want to construct a region, or set of points, which
is a funetion of the observations, and which has a preassigned probability
of covering the true, but unknown, parameter point. We shall indicate
how such a region could be constructed in eonnection with the model
above. We shall consider only the two “essential” parameters, « and u.
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Let us first make the assumption that u, and w, have a joint proba-
bility distribution which is approximately normal. As before, we assume
that x; is a fixed variable. Denote by A, the true value of the coefficient
a(l — u}/i1 — (1 — u)a] in (4.6), and by A, the true value of the coef-
ficlent (1 — w}/[1 — (1 — w)a] in (4.7). And let A, and A, be the cor-
responding estimates, as given by (4.8) and (4.9). Under the assumptions
made, the statistics 4, and A, will be linear functions of normally
distributed variables. 4, and A; will therefore also be normally dis-
tributed. Their means will be equal to A, and A, respectively. The
variance-covariance matrix of A, and A, will depend on o, 02, 0w,
and p. It is then possible to obtain a joint confidence region for « and g
in the following manner.

Let oy and o, and oy be the variances and the covariance of the
residual random elements in (4.6) and (4.7), i.e.,

(4.16) oy = E “L:OL]
L1 = (1~ pe
(1 ~ wu, — w, ]
(4.17) o = & -’1”*_“"(‘1__‘”7]
T e — aw (1 — wu, ~ w,
(4.18) o2 = & 11— (1 —wa 1 —(1 - pla ]

If equations (4.6) and (4.7) are fitted to the data by the method of
least squares, we obtain unbiased estimates, sy, sz, and sa, of oy,
oy, and a1z, respectively. These estimates are

N MMy = Mes®

4.19 =
( ) Su N —2 Tos

N MyyMzr — my:z
4.20 =
(4.20) o N-2 Moy

N MeyMzz — MezMys
4.21 = .
(421) BTN 2 Miae

Consider now the statistic T° defined by

P - N
(4.22) T2 = Nm,. 2, 8(d; — A)(A; — A))
4,571
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where s” denotes the inverse of the matrix 8;; . The distribution of the
statistic 7 is known. More specifically {(N — 3)/[2(N — 2)]}7” has the
F distribution with 2 and N — 3 degrees of freedom." Choosing a certain
level of significance, we find the corresponding value of F in Snedecor’s
table.” Let the corresponding value of T* be T3 . The set of points A ,
A, in the parameter space (4, , 4:) for which T* < T} form the srea of
an ellipse with its center at (4, 4;). This is a confidence region for the
parameter point (A, , As).

Since the transformation from the (4,, A;) plane to the (a, p) plane
is continuous, the confidence region derived for A;, A, leads to a cor-
responding confidence region for « and u. This transformation is given
by the definition of 4, and 4. . Expressing « and x in terms of 4, and .
A, , we have

A
(4.23) a=—
4,
4
(4.24) p=1 - ———.
1+ 4,

In the next section we shall give some numerieal illustrations.

5. BomE NuMericalL RESULTS

Some of the methods discussed in the preceding sections have been
applied to U.S. data, partly for the period 1922-1941, partly for the
period 1929-1941. The data used are given in Table 1." Moments used
in the calculations are listed in the appendix to Table 1. The numerical
results given below are numbered so as to correspond to the theoretical
formulae given in the preceding, theoretical sections. These results
should, therefore, require little additional explanation.

'* This fact was pointed out by Dr. T. W. Anderson. See also Wilks [1943, pPP.
234-250].

3 See Snedecor (1940, p. 184).

1 It will be noticed that, in addition to reducing the figures to a per eapita
basis, we have used the Bureau of Labor Statistics cost of living index as a com-
mon deflator. By this procedure we de not, of course, mean to imply that the
measure of “real investment” thus obtained is s good measure of the physical
output of investment goods. The purpose of deflating the current-dollars series
by the cost of living index is only to eliminate the effect of a scale factor in all
prices, this scale factor being taken to be an autonomous variable. If we postulate
that the absolute level of prices should not affect the real volume of consumption,
investment, etc., we are—at least in point of principle—free to choose any price
index as a common deflator.
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TABLE 1
U. 8. DATA USED [N STUDY

1) (2) 3) (4) (5) 8}
D.mpomble Conaur_nerc . Groas . Defiator:
income, expenditure, investment B.LS. Cost U.5
Year dollars dollara n=yr—c¢ dollars s Yo
. N X of Living population
per capita, per eapita, per capita, 1035-39 =100
deflated defiated deflated
Ve L] x; millions
1922 433 394 39 — 119.7 110.1
23 483 423 60 —_ 121.¢ 112.0
24 479 437 42 — 122.2 114.1
25 486 434 52 — 125.4 115.8
26 494 447 447 —_ 128.4 117.4
27 493 H7 51 - 124.0 119.0
28 511 468 15 - 122.6 120.5
29 534 474 80 128 122.5 121.8
1930 478 439 89 97 119.4 123.8
31 440 399 41 81 108.7 124.8
32 372 380 22 43 @7.6 125.6
33 381 364 17 45 92.4 126.3
34 419 392 27 a6 5.7 127.1
85 449 415 33 78 08.1 128.0
36 511 463 48 03 9.1 128.9
37 820 149 51 98 102.1 120.6
38 477 444 33 83 100.8 130.7
a9 BL7 471 446 1056 9.4 131.7
1940 548 494 54 122 100.2 132.8
41 629 529 160 185 105.2 134.0
Buma:
1922-41 9659 8752 907 —_
192041 8275 5704 - 1216 — —
Means:
192241 48295 437.60 45.35
182641 482.692 438.760 92 .5385
Second-order moments about mean:
1082-41; 102941
myy =3240.65 mey =2379.25 My, =4718.23 . ey =3413.69
mg »1704.35 mygw 870.40 Mo =2519 .85 My =2159.62
mgg = 285.55 Mg = 584,90 mzg = 1025 .92 m; =1537 .85

Sources of data.

Columna (1), (2), and (3): Years 1929-41 from Sursey of Current Business, May, 1942, p. 12
Barlier years from unpublished estimates by the Department of Commerce. DeBated
per eapita, figures have been calculated by means of Columns (5) and (6).

Column (4}: See (4.1} for definition of 2. Years 1920-4] from Sursey of Current Buainess,
May, 1942, as revised in subsequent issues.

Columps (5) and {8): See, ¢.g , Statiatical Abatracte of the United States. (Population figures
for 193041 have been adjusted for underenumeration of children under 5.3
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A. Numerical illustrations to Section 2. Applying formulae (2.11),
(2.14), and (2.15) to the data given in Table 1, we obtain the following
estimates:

(2.11.3) — = 3.048 (the “multiplier”)
— &
(2.14.0) a = 0.672 (the marginal propensity to consume)
(2.15.2) g = 13.1
Formula (2.13), for N = 20, gives
(2.13.8) & = 662.82; s=257

from which we obtain the standard error of 1/(1 — &) = s//20m.. =
0.341. From tables of the t-distribution, and choosing 5 per cent as the
level of significance, we find

3.048 —
(2.21.a) 21015t = 2 <2101,
0.341
from which it follows that
233 = = 3.76.
-

The corresponding confidence interval for « is

0.57 £ a £ 0.73.

For comparison, we have calculated the least-squares ‘“‘estimates,”
a and b, obtaining
(2.16.a) a= 0.732

{2.17.a) b = 84.0.

As one might expect [see (2.19) and (2.20)], we find that ¢ > &, and
b < §. Although the difference does not appear to be very large in
terms of e, it is considerable in terms of the multiplier 1/(1 — «), viz.
3.048 versus 3.731.°

B. Numerical illustrations to Section .. Here we consider the model
given by (4.2)-(4.5). We use data for 1929-1941 only, since the present
model requires that the various terms add up in the manner defined by

15 Although it is not the purpose of this chapter to improve upon economic
theory, it iz perhaps of interest to observe that, under the approach outlined
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the U.S. Department of Commerce estimates of the gross national
product and its components. Consistent, data in this respect are available
only from 1929. The results obtained are as follows:

(4.8.a) A= 1.499
(4.9.2) A, = 2105
0,
-~ ]
|
- |
|
- |
___________________ |
10} : |
|
|
B } ]
| |
| f
] |
' |
i E |
I f 4z
0 I ! 1 ! | I I l L i i I
0 10 2.0 30

Figvre 1—-Joint confidence region for A; and A,; level of significance, 5%,

(4.12.a) &= 0712
(4.13.8) B= 9505

(4.14.8) n= 0158
(4.15.a) $ = — 31.30.

The estimate of « is here slightly higher than that given by (2.14.a),
while the estimate of 8 is, correspondingly, somewhat lower. (For
comparisen, we have also here caleulated the least-squares regression of
¢; on y; . The “estimate” obtained for « was 0.723, which in this case
happens to come rather close to the estimate « above.)

above, it is possible to show that last year’s income algo plays a role as a variable
in the eonsumption function. By a method similar to that used above, treating
%1 a8 & predetermined variable, one finds ¢, = 0.57y. + 0.16y._; + const., while
the least-squares estimate of this equation yields ¢; = 0.7y, + 0.05y., + const,
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We shall derive a confidence region for e and g. For this purpose we
have calculated

(4.19.2) - sy = 253.658

(4.20.a) 8 = 203.439

{4.21.a) $1» = 208,538,
0.5n

[+

0 | | ) ] |
0 0.5 1.0

Figure 2—Joint confidence region for o and g, cor-
responding to the region in Figure 1.

Now, [(N — 3)/2(N — 2)]T” has the “F”-distribution, F2y_;. In our
case N = 13. Choosing the 5 per cent level of significance, we find
from Snedecor’s table that F = 4.10. The corresponding value of T” is
then T = 9.02. Using this and (4.19.a)~(4.21.a) we derive

0.02 = 13337[0.02507(4, — A))?
— 0.05139(4, — A) (A3 — As) + 003125(4, — 42)?),

where A, and A, are given by (4.8.a) and (4.9.a). (4.22.a) represents an
ellipse in the parameter space of 4; and A.. The area covered by this
ellipse is the confidence region for 4, and 4, . It is shown in Figure 1.
The corresponding confidence region for « and p is shown in Figure 2.
This latter region was derived numerically by means of the transforma-
tions defining 4, and A, .

" (1.22.0)
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1. InTrODUCTION: T'HE SIMULTANEOUS-EQUATIONS APPROACH

In economic theory it is shown that the demand for a commeodity can
be considered as a function of the price of the commodity, the prices of
other commodities, and the disposable income of the consumer. By
analogy, we are led to the hypothesis that the total demand for the
commodity may be considered s function of all prices and of total dis-
posable income of all consumers. The ideal method of verifying this
hypothesis and of obtaining a picture of the demand function involved
would be to conduct a large-scale experiment, imposing alternative
prices and levels of income on the consumers and studying their reac-
tion. If we could produce a large number of observations in this way
we should probably find that the data would not satisfy, exactly, any
simple functional relationship. Let z. be the i{th observation of the

! Thig chapter is a reprinting of parts of an article which appeared under the
same title in Econometrica, Vol. 15, April, 1947, pp. 79-110. In its original form
the article contained an exposition of the theory of the limited-information method
for estimating an equation and the computation procedure for obtaining these
estimates. Since these topics are treated more extensively in Chapters VI and X
of the present volume, the parts of the article devoted to them have been deleted
from the version printed here. In particular, Section 3 and material from pages
100-108 of Section 4 of the original version have been deleted and minor compen-
sating changes made. As stated in the original version, the present chapter con-
tains some preliminary, and highly tentative, results of a projeet of quantitative
research in agricultural economies of the Department of Economies of the Uni-
vergity of Chicago and the Cowles Commission for Research in Economics. The
authors gratefully acknowledge their indebtedness to colleagues at the U. 8.
Bureau of Agricultural Economies and the University of Chicago for helpful
suggestions and constructive eriticism. Special thanks are extended to Miss Selma
Bchweitzer and Mrs. Lois N. Shores. They have carried out most of the numerieal
work and have also helped to improve the exposition of the statistical methods
involved. Needless to say, the authors assume all responsibility for the results
presented. -

92
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quantity consumed, pi;, P, - - , Pae the corresporiding prices of the n
commodities in the market, and y, income, and let F(py,, pa, -« -,
Pat, Ye; u, a2, -+, o) be a function containing % parameters a,
az, -+, ax. Then we could write, in a purely formal way,

(11) Ty = F(plh Poey "7 g Pty Y,y =00 sak) +u¢1

where u, is a “residual.” In order to operate with a reasonably simple
function, F, with a finite number of parameters, o, it would be necessary
to admit nonzero values of the u’s. The relation (1.1) would be only a
useless rewriting of the facts unless we could say something more about
the properties of the w's. The w’s must have some properties that are
predictable on the average. A rational way of expressing this hypothesis
is to assume that the w’s are stochastic variables having certain char-
acteristic distribution properties. The economic meaning of such a
model is that, given a certain set of values of prices and income, con-
sumers do not always behave in exactly the same way, perhaps because
of the influence of other, neglected, variables or simply because the
individuals are not absolutely consistent in their behavior.

If we were able to conduct an experiment as described we might take
the values of the p’s and of ¥ to be a set of fixed, predetermined numbers,
while the observations of x would be random variables, the stochastie
properties of which would be defined implieitly by the stochastic prop-
erties assumed for the u’s. On the basis of a set of observations and an
assumed known form of the function F we might then be able to estimate
the parameters o and also the parameters in the distribution of the u’s.

Implicit in this statement is the assumption that there are no errors
of measurement in the p’s and y, in other words, that the observed
values of the prices are the prices actually paid by the consumers and
that the observations of y are correct measurements of their income.

But suppose it is not possible to carry out a rational experiment of
the type described. Could we not assume that an “experiment” of a
similar type is being carried out automatically by the market mech-
anism of the economy? Most of the numerical studies of demand func-
tions have in fact been founded on this basis. It has been assumed that
observed series of simultaneous values of consumer purchases, prices,
and income represent data that are statistically of the same nature as
those that one would obtain by an experiment of the type described. On
this basis various types of demand functions have been fitted to observed
data by choosing quantities consumed as the “dependent” variables
and the prices and income as “independent” variables. There is a funda-
mental error in this approach. It leads to a logical contradiction: The
demand function should, theoretically, be independent of the manner



94 M. A. GIRSHICK AND T. HAAVELMO [craP. v

in which the prices and income are being fixed. But the “demand”
function obtained by fitting the function (1.1) to market data for quanti-
ties purchased, prices, and income—as if they were the results of our
hypothetical experiment—will depend on the nature of the other eco-
nomic relations that, together with the demand function, determine
the observable quantities, prices, and incomes. It is not always easy to
see this intuitively. A simple example might be helpful.

Let x, be a time series of the quantity consumed of a certain com-
modity and let p; be the corresponding price series. And suppose that
the demand function to be estimated is of the simple form

(1.2) Ze = ap: + B + ue, t=112:"'.'

Suppose it is known that the w’s are normally and independently dis-
tributed with &(w,) = 0, &(ui)} = o} for all values of £. We assume that
z and p are observed without errors of measurement. Suppose that we
try to estimate a and 8 by a least-squares regression of z on p. We shall
show that the result of this procedure will depend on the form of the
supply function. Let us assume two different alternatives for the supply
function:

(1.3a) = hipe + ki + v,
or
{1.3b) Ty = hapey + ho + w4,

where the v’s and the w’s are random residuals while the A’s and the k's
are constants.

Suppose, first, that (1.3a) is the true supply function. And let us
assume that the v’s are normally and independently distributed with
&) = 0 and S(vf) = o2 for all values of {. Let E(uw,) = o4, be the
covariance between u and v. Let, further, m., , m,, , etc., denote second- i
order moments about the mean, and m., m,, etc., the means of the
variables, over the range ¢ = 1,2, --- | T. Then the regression of = on
P Yyields a regression equation

Y = ap + b,

where

(1.4) a =,
‘ Mypp

(1.5) b == TzTpp = MpMap
mpp

Let us consider the estimate, a, that would be obtained for an infinite
sarnple, so that we do not have the extra complications of sampling
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variations. In order to see what the formula (1.4) would mean under
this condition we sélve the two equations (1.2) and (1.3a) for z, and
Pe , obtaining

(1.6) $¢=A +U¢,
where A = 2B — Bl g g o e Buus
a— Ry a—
and
(1’7) p! = B + V! ’

where B = k- B and V, = DT e
a — Ry a — hl
Equations (1.6 and (1.7) are called the reduced form of the system (1.2)
and (1.32). For an infinite sample we can replace the moments Moy
and m, by the covariance 0., and the variance o,, respectively, where,
from (1.6) and (1.7},

aoe — (a + R)owe + By an

{1.8) Tip = @ =iy ’
oy — 20us + %
(I.g) O'W = W

From this we obtain a value for a that approaches, in the probability
sense, the limit

C!G'i _— (t! + hl)o'mr + hl 0'2u

‘73 - 2a'|m + 0-1

Whether this is an estimate of « in the sense that, apart from chance
fluctuations arising in samples of finite size, it equals @, depends not
only on a but on the value of the ¢’s and k. In fact, if the supply equa-
tion (1.3a) is true, and we have no other a priori information, it is im-
possible to estimate a or 8 by any method whatsoever. This is seen as
follows: Let us multiply equation (1.2) by an arbitrary factor ¢ and
equation (1.3a) by (1 — ¢) and add the two equations. This gives

(1.11) =z = [+ cla — h)lpe + o + (B — k)] + [eus + (1 — o))

This equation is of the same form as any one of the original equations,
and the residual term feu: + (1 ~ ¢)v;] has exactly the same general
properties as % or v, which are in any case not observable. By varying
¢ we get an infinity of equations, any one of which can replace (1.2) or
(1.3a) without any observable effect on the r's and the p’s. Obviously
the data do not contain any information by which to identify the par-
ticular equation (1.2),

(1.10)
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Thus, if (1.3a) is the supply equation there exists no formula for esti-
mating the paramelers of the demand function (1.2). This cannot be seen
from the spectfication of the demand function alone.

Let us now assume that (1.3b) is the true supply function instead of
(1.3a). And let us again solve the system for z; and p,. We then obtain,
as the reduced form of the system (1.2) and (1.3b), the following system:

(1.12) Te = hapes + b2+ we [equation (1.3b)},

(1-13) De = ’-l- Pi: + B L = ut-

[+4

Obviously p.; does not depend on u; and w,. It depends only on u,_,,
Usg, *** , and Wea, Wes, --- . By fitting each of the two equations
(1.12) and (1.13) to the data by the method of least squares using p._; as
the independent variable we can obtain estimates of the coefficients of the
reduced form, viz., hs, ke, hs/a, and (ks — 8)/a. We can get these esti-
mates as accurately as we please by taking a sufficiently large sample,
supposing the assumptions made to be valid over a sufficiently long
period. From these four estimates we can in turn calculate the corre-
sponding values of o and 8. But this methed of estimating o and 8 could
not have been deduced from the specification of (1.2) alone.

Suppose that, in this second model, we should consider the regres-
sion of z on p, that is, the regression coefficients (1.4} and {1.5). Let us
calculate what @ = ma.,/m,, would be in the present model, assuming
an infinite sample. From (1.12) and (1.13) we obtain

s 1

(1-14) Myp = ;" 7"'3:11!_‘..;11‘_1 + (; (a'lzv - Uw),
2
1
(1.15) Mpp = a—: My, _.2,_, -+ e’ (02 — 200 + o).
Thérefore,
(1.16) o=z _oHams s ow t o)

My MMy, o, + 0% — 200 + 03

Obviously, this expression is not, in general, equal to «, nor is it, in
general, equal to the expression (1.10).

These illustrations should be sufficient to show tb.e difficulties en-
countered in devising estimation formulae for the estimation of a de-
mand function on the basis of a specification of this function alone. This
is, indeed, impossible if the supply function or other relationships in-
volving the same variables are of such a form as to make the demand
function unidentifiable. For the case in which identifiability is assured
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or hypothesized, estimation procedures requiring for their consistency
very little beyond that hypothesis have been proposed by Wald [1950b].
However, these estimates must be regarded as rather inefficient whenever
information about the form of other relationships in the model is avail-
able. Generally, if we wish to estimate any particular economic rela-
tionship on the basis of market data, we are materially helped by
considering, stmultanecusly, the whole system of economie relations that
together represent the mechanism that produces the data we observe
in the market. Qur examples above already indicate some of the tools
of statistical technique that are available for dealing with problems of
this nature. We shall attempt to set out the principles in somewhat more
general terms.

Let (), -+, ya(t) denote n observable economic time series. As-
sume that these n series satisfy » linear stochastic lag relations in-
volving m observable “exogenous” time series z({), --- , z.(f), and
n random, nonobservable residuals w.(f), - - - , u.{f) expressing the sto-
chastic nature of economic behavior. To simplify the exposition we
shall assume that there is only one type of lag term involved, namely
y{t — 1),7 = 1,2, ---, n. But our results can easily be generalized to
the case where other lags are involved. Let this system of relations be

(1.17) z\; ai; yi(t) + é Byt — 1) + X:; vi; 2;(8) = wle),

i=12---n;t =12 .-+ T

It is assumed that the variables y and z are observable without signifi-
cani errors of measurement, in other words, that these variables are
measured according to their definition in our economic theory.

We make the following assumptions about the random elements

wlf):

(1.18) Eu(t) = 0, i=12 -, n3t=12---, T
(1.19) Slu(tlu )] = o, ,7=1,2---,n;t=1,2,---,T;
(1.20) Eludb)u;t — ] = 0, L,i=1 2 ,n;8 = 0
(1.21) z;{t) stochastically independent of u.(2"),

i=4L2 .- mi=12- - ,n;¢,LL =1,2---, T

(1.19) says that simultaneous values of the n %'s have a certain unknown
n-by-n matrix of variances and covariances that do not depend on &
{1.20) means that there is no serial correlation in the %’s. It is easily
seen that the assumptions {1.20) and (1.21) imply that y;(¢ — 1) and
u,(t) are stochastically independent for all values of 7 and j.
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The problem is to estimate the o’s, the 8’s, the v’s, and the ¢'s from
the observations of the y’s and the z's at successive points of time
t=0,1,2 ---, T From the form of the system (1.17), however, we
see Immediately that there is, in each equation, an arbitrary propor-
tionality factor that we can never estimate from the data, because we
cannot observe the #’s and hence we do not know the scale of the o's.
One way of disposing of this arbitrariness is to impose a rule of normal-
ization, e.g., by assuming that one of the a’s in each equation is = 1,
After this normalization there remain n{n — 1) o’s, n* §'s, nm v’s, and
n{n 4+ 1)/2 ¢’s to be estimated from the data.

Now, let us consider the reduced form of the system (1.17). This is
the system of equations obtained by considering the system (1.17}, for
any given value of {, as a system of n linear equations in (), -- -,
ya(2) and solving for y;{¢) in terms of the lagged y’s, the #’s, and the u's.
Obviously these solutions will be linear expressions in the variables
y{t — 1), the z(t)’s, and the u(t)’s. That is, the reduced form of (1.17)
will be

(1.22) yle) = ; Ty — 1) + Zl: wii2;(8) + o),
i=12--,mt=12--,T

where the #'s are constants that depend on the «'s, the 8's, and the v’s
in (1.17), while the »’s are new random residuals that are simply linear
combinations of the «’s in (1.17). The v’s therefore have stochastic
properties that are exactly similar to those of the u’s as given by (1.18)
—(1.21). The variances and covariances of the v’s will depend upon
the variances and covariances of the u's and upon the «’s. In particular,
the v’s will be stochastically independent of the variables y(t — 1} and
the variables z(f). This follows from our assumptions about the w’s.
It can then be shown that by fitting each of the equations (1.22) to the
data by the method of least squares, considering y;{(f) as the dependent
variable, the estimates p;; and p: ; obtained for ,; and xij, respectively,
will possess certain optimal properties of “‘best estimates”

Obviously the system (1.22) is equivalent to the system (1.17) as
far as the observations of the %’s and the 2’s are concerned. Knowledge
of the values of the »'s and the parameters of the distribution of the
v’s would cover exhaustively all the implications of our theory as far as
its observable consequences are concerned. This raises the following
fundamental problem: To every systemm (1.17) there generally corre-
sponds one and only one reduced form {1.22), that is, one and only one
set of values of the #'s and the variances and covariances of the v's.
But does the converse also hold? That is, will the knowledge of the
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values of the #’s and the variances and covariances of the »’s determine
uniquely the values of the o’s, the 8’s, ete.? This is the problem of identi-
Scation,

There are, altogether, n(n 4+ m) #'s and n(n + 1)/2 variances and co-
variances of the v’s. These parameters can be estimated from the data.
Since these parameters are functions of the a’s, the g’s, the v’s, and
the #’s our estimates provide us with [n{n + m) + n(n + 1)/2] equations
by which to calculate estimates of the original parameters. But from
our counting above we found that, without additional restrictions upon
the original parameters, there were [n(n — 1) + n(n + m) + n(n + 1)/2]
unknown parameters to be estimated. That is, there would be n(n — 1)
more unknown parameters than could be estimated from the data. We
then say that there is lack of identification in the system. The only
way of getting around this difficulty is to assume that we have some
additional a priori information about the unknown parameters. The
most frequently used type of assumptions of this kind is that some of
the a's, #’s, and +'s are known to be equal to zero, which means that
some of the variables do not actually occur in all of the equations. By
adding a sufficient number of such restrictions the system may become
“sust wlentified’’; that is, having estimates of the »'s and the variances
and covariances of the »’s we have exactly enough independent equations
to determine the original, unknown parameters, If we have even more a
priori restrictions than are required for this purpose, the system may
become overideniified, that is, the estimates of the x's and the variances
and covariances of the »'s give us more equations by which to derive the
original parameters than there are such unknown parameters. This
happens, of course, only if we neglect the extra restrictions in estimating
the #’s and the variances and covariances of the v’s. To take account
of side restrictions upon the #’s or the variance-covariance matrix of
the v’s in the process of estimating these parameters often leads, however,
to very complicated computational problems. To get arcund this diffi-
culty, certain short-cut methods have been worked out, whereby part
of the a priori restrictions upon the coefficients are neglected, and there-
fore some statistical efficiency is given up, in return for simpler compu-
tational procedure. These methods, known as limited-information meth-
ods, will be explained in Chapters VI and X of the present volume.

The notions of “lack of identification,” *just identified,” and “over-
identified” can obviously be applied also t0 a single equation in the
system (1.17), by considering whether or not the knowledge of the »’s
and the variance-covariance matrix of the v’s allows us to derive uniquely

? See Chapter V1, Section 6, and Chapter X, Sections 3, 8, 9.
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the parameters of that particular equation. Some of the equations in the
system may be idenfifiable while others are not.’

It will be noticed that these properties of identifiability are formal
properties of the system of equations that one is considering in each
case. A careful analysis of these properties is necessary before one
attempts to derive actual, numerical estimates.

In the following sections we shall discuss a tentative application of
the various principles discussed above to a model of the connection
between agriculture and the rest of the economy.

2. MacropyNami¢ MopeLs ExpraiNing THE DEMAND ¥or Foop

We have peinted out that if one wants to study economic relations
within one particular sector of the economy, one usually has to con-
sider also the economic relations that govern the other sectors. But for
practical reasons some simplification of the general theory is unavoid-
able. By methods of aggregation one has to try to reduce the number
of the relations in which one is not directly interested to a minimum.
The models below illustrate this principle.

A. The Demand for Food

If one divides total consumption into two groups, food and nonfood,
one could say, by analogy from the microtheory of consumers’ choice,
that the per capita demand for food is a function of the price of food,
the price of nonfood, and the per capita disposable income. Let ¢ de-
note annual per capita expenditure for food, and let p be the price of
food, pe the price of nonfood, P the total cost-of-living index, and r,
per capita disposable income. We may take y» = ¢/ 25 an index of
the volume of food consumption. Since P is a funetion of p; and p; we
might consider the variables p, and P instead of p; and pe. Iet 32 = pi /P
denote the relative price of food and ¥, = r/P the deflated per capita
disposable income. Assuming the demand function to be a linear fune-
tion of the relative price of food, 12, and the “real income,” y;, we are
then led to the hypothesis:

(2.12) nt) = amn(t) + enys(t) + an 4+ wll),

where the a’s are constants and w,(f) is a random residual (a random
“shift”’) for each value of {. The demand for food may be subject to a

! For a more detailed treatment of the problems of identification see Chapters
1l and VI, SBection 4.4 and Appendix A, of this volume and also Chapters IT, I1I,
and IV of Statistical Inference in Dynamic Economic Models, Cowles Commission
Monograph 10, New York: John Wiley & Sons, 1950,
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trend due to changes in tastes, eating habits, etc., so that, alternatively,
we might consider the demand

(2.1b) 1) = anye(t) 4+ auy(t) + yut + aw + wll).

Still another alternative would be that the consumption of food also
depends, to some extent, on past income y3(f — 1), in which case we
would write

(2.1c) 9@ = anp(t) + ewys(t) + vul + yiegalt — 1) + @ + u(t).

The o’s, the ¥'s, and the u's would of course have different interpre-
tations in each of these three alternative equations. A similar remark
applies to the various alternatives with respect to the other equations
discussed below.

It will be noticed that in each of the three alternative demand equa-
tions there are three simullaneous, or jointly dependent, variables, that
1s, variables that have to be “explained” by other relations in the
economic system, while the variables ¢ and y;( — 1) may be considered
as given or predetermined in the sense that they are stochastically
independent of the random variable u,(t). We assume that &[u, ()us({— 7))
= 0 for 7 ¢ 0, in other words, that there is no serial correlation in
the residuals w(f).

B. The Income Equation

In statistical studies of demand functions it has usually been as-
sumed that income could be considered as a given, or independent,
variable. In particular, it has been argued that, if the commeodity in
question represents only a small part of the budget, the repercussions
upon income of variations in the demand for the commodity could be
neglected. This hypothesis is obviously false. We could always split
up total consumption into small subgroups by a sufficiently detailed
specification of the various types of consumer goods. QObviously such
a regrouping could not alter the fact that changes in the total consumer
expenditures have a direct effect on income, income being the sum of
consumers’ expenditures and investment expenditures. We must there-
fore assume that income y;(f) depends to some extent on the random
shifts «,{t) in the demand for food.

To arrive at an equation for income we must first derive the demand
for ail eonsumer goods. By our definition above this total demand is
the sum of the demand for food and the demand for nonfood. Instead
of considering the two equations, “demand for food” and “demand
for nonfood,” we might, however, equally well consider the pair, “de-
mand for food” and “demand for all consumer goods.” For the latter
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we may adopt the commonly accepted hypothesis that total per capita
consumers’ expenditure, deflated, is a linear function of real income,
subject to random shifts. If ¢(f) denotes per capita consumers’ ex-
penditure we therefore assume that

22) 0 = ast) + aw + ()

where u(f) is a random residua! that is the sum of the residual u(¢)
in the demand equation for food and the corresponding residual in the
demand function for nonfood. It will be noted that the prices p: and p:
do not appear explicitly in this equation. This is equivalent to assum-
ing that if the prices of individual commodities change there is no
change in the relative allocation of income between present and future
expected consumption (i.e., savings) except that which is brought
about by the (real) income effect of the price change.

In order to derive an equation for income, y;, we now adopt the
hypothesis that investment expenditures measured in constant dollars
represent an aufonomous variable, an impressed force. We define the
investment expenditures, z(f), as

I(®) c(f)
@3) 20) = p5 = v ~ 25
where I(¢) is per capita investment expenditures in current dollars.
From (2.2) and (2.3) we then derive

(2.4a) ys(t) = rae(t) + an + w(t),
where

731"_"‘1_“1 aw:]_av

This might be called “the multiplier theory of income.” There might be
a trend in the consumption funection (2.2), in which case we would ob-
tain

(2.4b) #l(t} = vnz() + vl + an + ua(‘)-

Furthermore, it is possible that the consumption function also depends
on lagged income, in which case we would obtain

(2.4c) ys(t} = yuz(®) + vt + varslt — 1) + an +us(d).

C. Supply of Food in the Retail Market

In order to arrive at an approximate mode! for the marketing chain
for food products we propose to split the supply mechanism into two
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steps: namely the “supply by the farmers, demand by the commercial
sector,” and “supply by the commercial sector, demand by the con-
sumers.”’” In other words, we consider the whole commercial sector
between the farmers and the consuming public as a “factory’ buying
raw materials from the farmers and supplying finished food products
to the public.

Consider the supply of finished food products. In general, one might
assume that this supply would depend on the retail price and the prices
paid to farmers for crude foodstuffs. As an alternative to the variable
“prices paid to farmers” in this supply function one might instead
consider farm output of foodstuff, assuming that the farmer has fo sell
once the foodstuff has been produced, and that, therefore, prices paid
to farmers may be considered as a residual share. One might also expect
a trend in the supply equation, due to gradual change in processing
and marketing technique. Since the commercial sector has the alternative
of exporting instead of selling on the home market, and of importing
food instead of buying from domestic farmers, the export and import
prices might also enter the supply equation. In that case we assume, as
an approximation, that the export and import prices are proportional,
so that the “foreign’’ price can be represented by one price, the export
price.

Let y(f) denote the per capita supply of food by farmers to the
commercial sector. (For simplicity we may consider—somewhat arti-
ficially perhaps—the farmers’ own food consumption as also going
through the commercial chanuels.) Let, further, y(f) denote prices
paid to farmers, and let p.(i) be the price of food in foreign markets.
Both these prices should be considered as “‘normalized’” by deflating
them by the general cost-of-living index. Then we might consider the
following alternative hypotheses regarding the retail supply of food:

(2.52) () = amya(t) + awya() + val + an + w(D),
2.5b) n(t) = anya(® + awys(® + vud + an + wll),
(2.5¢) wi(t) = coa(®) + ams(®) + vul + vap(t) + cn + w().

D. Supply of Foodstuffs by Farmers

For many farm products one might consider current output as a re-
sult of decisions based on past prices and other variables not related
to the current market situation, such as weather, pasture conditions,
available acreage, etc. The farmers have, on the other hand, un-
doubtedly some possibilities of almost instantaneous adjustment to
the current price situation. They can speed up or slow down the feed-
ing of livestock, put more labor, or less labor, into harvesting crops, etc.
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Other products, such as vegetables or poultry, may have a period of
production much shorter than a year. When we use annual data it
would, therefore, seem necessary to include current prices as a variable
influencing farm output of food. A trend might account for certain
technological changes in technique of production, changes in the farm
population, ete. We might then consider the following equation as an
approximation to the farmers’ supply equation:

(2.6a) () = awy() + vat + veyst — 1) + aw + wld),

where the random residusls «,(f) might be expected to be large, particu-
larly because we have no explicit variable accounting for the influence
of the weather.

The supply equation (2.6a) does not explicitly take account of the
effect of change in capacity, such as change in acreage, livestock, farm
machinery, etc. One way of accounting for such changes might be
to include last year's production as an additional variable, a “scale
factor,” for the output of the current vear. This leads us to

(2:6b)  wul(®) = auys(®) + val + yoys(t — 1) + vou(t — 1) + aw + wll).

If we were interested in a more detailed study of the determinants of
food output, the equations (2.6a) or (2.6b) could probably not be con-
sidered as adequate behavioristic equations for the production policy
of the farmers. It would be necessary to study production functions,
principles of profit maximization, ete. The equations (2.6a) or (2.6b)
must, to some extent, be considered as ‘‘derived” equations, the param-
eters of which are again functions of certain behavioristic parameters.

For the purpose of studying the demand for food one might even
consider a much simpler hypothesis, namely

(2.6¢) (t) = a predetermined variable.

That is, we might think of farm food output as being practically inde-
pendent of the current market situation. Such a hypothesis is obviously
not strictly true. On the other hand, noneconomic factors, such as
weather, together with lagged prices and other factors that do not
depend on the current market situation, might be so dominant in de-
termining current farm output that the errors of assuming that 1) ay
is zero and 2) w,(f) is uncorrelated with the u’s in the other equations
are not serious. Under these conditions it would be permissible, for the
purpose of estimating the other equations in our system, to consider
wu(t) as a statistically predetermined, or fixed, variable, without explain-
sng how this variable itself is being determined in the svstem.
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E. The Demand for Farm Food Products by the Commercial Sector

If y(t) is not considered as a predetermined variable, it is necessary
to study not only the supply function for farm food products but also
the demand- function for these products. We shall assume that the
commercial sector demands farm food products for three purposes: 1)
{or processing and sale in the domestie retail market, 2) for export, and
3) for maintenance of, or changes in, commercial stocks. If we assume
that the demand for stocks depends only on current prices, we may
write this demand function as

(2.72) wll) = app(t) + owys(t) + val + vep ) 4 aso + us(d).

If we were to consider {2.5a) as the supply function for the retail
markef, we might even consider a much simpler demand funetion for
farm food products, namely

(2.7b) () = asaye(®) + sl + ase + us(D),

that is, we might assume that the price received by farmers is s “resid-
ual” which 1s a linear function of the prices obtained in the retail market.
This then would have to be considered as a somewhat “superficial,”
institutional, equation, rather than a structural equation.

Above we have considered 5 groups of equations, namely [(2.1a),
(2.1b), (2.1¢)), [(2.4a), (2.4b), (2.4¢)], [(2.5a), (2.5b), (2.5¢)], [(2.6a),
{2.6b), (2.6¢)], [(2.7a), (2.7b)]. Choosing one equation from each of
these groups, we have a system of 5 equations. It will be noticed that
these five equations involve 5 simultaneous random residuals, denoted
by u, and 5 simultaneous, observable variables, denoted by y. In addi-
tion, there are certain other variables, namely {, 2{f), and p.(f). These
latter variables are statistically different from the y's, in the sense
that, stochastically, they do not depend on the random residuals .
The same is, by assumption, true of the various lagged values of the
variables y that occur in some of the equations. The variables y{(t — 1)
are stochastically independent of the variables (). Statistically, the
variables y(t — 1) can, therefore, be grouped together with ¢, z(¢), and
p.{t) under the category of “predetermined variables,”™ while the 5
variables y(f) [except in the particular ease (2.6¢)] may be called “jointly
dependent” variables, because their stochastic properties depend on
the stochastic properties assumed for the random variables u(f).

We may consider any one of the possible systems of five equations as
a system determining the five jointly dependent variables y(f) as func-
tions of the five random variables u(f) and the predetermined variables.
This means that, for any given set of values of the predetermined

¢ See Chapter VI, Section 1.5.
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variables, the joint distribution of the five jointly dependent variables
y(f), for any value of ¢, is given implicitly by the joint probability dis-
tribution of the five variables u(t). It is this joint probability distribulion
that must form the basis for the estimation of the unknown paramelers, the
o's and the ¥'s. The statistical procedure involved will be explained in
Chapter VI.

Suppose that, among the various alternative systems of five equa-
tions discussed above, there is one for which there exists a set of values
of the parameters such that, for-the assumed distribution of the w’s,
the resulting joint probability distribution of the ¥’s is identical with
the true distribution of the observable 3’s, for all values of the pre-
determined variables. Then we may say that the model is “true,” in
the sense that it is consistent with observations. Suppose, for example,
that the model (2.1a), (2.4a), (2.5a), (2.6a), and (2.7a), together with a
certain assumption concerning the joint probability distribution of the
u's, represents a true medel, by appropriate choice of the values of the
parameters. In that case it is obvious that there exist an infinity of
equivalent systems of equations that alse represent “true” models. For
example, by an arbitrary linear combination of two or more of the
original equations we can derive a new equation that, together with
four of the old equations, forms a true model. Why is it that we are
interested in one particular member of this infinite set of true systems?
1t is because, in setting up the original model, we believe that there is
one particular system of equations that is a system of aufonomous, or
structural equations, that is, equations such that it is possible that the
parameters in any one of the equations could ¢n fact change, e.g., by
the introduction of some new economic policy, without any change
taking place in any of the parameters of the other equations. If there
is one system for which this is true, the other systems that can be
derived from it will not have this property. The parameters of equations
in derived systems will be functions of the parameters in two or more
of the equations in the original system.

Suppose that we should succeed in deriving the structural equations
of a model that is “true” in the sense discussed above and suppose
also that these equations are identifiable, so that we could measure sta-
tistically the parameters involved. What could be the use of this knowl-
edge? It would, first of all, help to satisfy a justified scientific curiosity.
But we believe that such knowledge also could be of more immediate
practical importance. The results could be used to judge, in advance,
the effects of various policies that might be considered. If the policy
considered represents a known change in the structure, e.g., a known
absolute or relative change in one or more of the parameters or variables
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involved, and if the structure before the change is known, then obviously
the structure affer the change is also known, and we can compare the
two. A variety of practical policies with regard to taxation, subsidies,
ete., are precisely of this type.

It is clear, then, that the fundamental objective of statistical infer-
ence with respeet to economic models is to derive estimates of the
structural parameters. Knowing the structural parameters, all the rela-
tions implied by the model can be derived. In a sense these structural
parameters play a role similar to that of the elements in chemistry.

3. Some NusmEericarn REesvvits

As an illustration,’ the limited-information method has been applied
to the estimation of the coefficients of each equation (taken one by one)
of the following system of equations:

(3.1) 11(t) = are(t) + cnst(t) + mis2s(t) + vis20(8) + an + i),
(3.2) m{t) = ogye(l) + ety + vaszs(t) + e + ua(t),

(8.3) ws(8) = yuze(t) + v205(t) + an + ual(l),

(3.4) n() = awysl) + vwzalt) + ves2(t) + aw -+ (D),

(3.5) ¥s(t) = amta(t) + veutslt) + aso + ws(t).

These equations correspond to (2.1c), (2.5a), (2.4¢) (omitting trend),
(2.62), and (2.7b), except that, for the sake of symmetry, we have
here used the notations ys(t—1) = z(i), 2(f) = z(1), t = z(?), and
ys(t—1) = z(t). The following series were used for the model:

y: = Food consumption per capita published by the Bureau of Agri-
cultural Economics. (An adjustment has been made in the offi-
cial series for 1934 to exclude the quantity of meat purchased
by the Government for relief purposes and distributed through
noncommercial channels.)

y: = Retail prices of food products (BAE), deflated by the Index
of Consumer Prices for Moderate Income Families in Cities,
published by the Bureau of Labor Statistics.

ys = Disposable income per capita (Dept. of Commerce), deflated by
the BLS Consumer Price Index.

s The model discussed here has been chosen primarily because it presents, in a
simple form, almost all the particular statistical problems that have been discuased
in the foregoing sections. Actually, we have carried out numerical work for 2
variety of different models, some of which might be more realistic than the one
presented here.
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Production of agricultural food products per capita (BAE).
Prices received by farmers for food products (BAE), deflated by
BLS Consumer Price Index.

ys(t—1) = Prices received by farmers for food products, lagged
one year.

z(f) = Net invesiment per capita = Disposable income minus
consumers’ expenditures, based on Dept. of Commerce data,
deflated by BLS Consumer Price Index.

t = Time,.

#a(t—1) = Disposable income per eapita, lagged one year.

data are expressed in terms of index numbers (1935-39 = 100)
for time, z5, which has the values, 1, 2, ---, 20, The analysis

covers the period 1922 through 1941. The data are given in Table 1.

TABLE 1

Data Usep IN THIS STUDY

1 ye s V4 ¥ 25 %7 13 Z9
Pricea Invest-
Calendar | Food Food  Disp. g, rec’dby ment
cons prices  income prod farmers per

year *  +by + by . forfeod w(-1) capita Time  gi(t-1)

mp?m coet of  cost of capeita =+ by + by

g living  living P cost of cost of

living living
1923 98.6 100.2 B7.4 108.5 981 98.0 92.9 1 77.4
1923 101.2 101.¢ 97.6 110.1 99.1 9.1 142.9 2 87.4
1024 102.4 105 96.7 110.4 98.9 9.1 100.0 3 97.6
1925 1609 166.0 98,2 104.3 i10.8 98.9 123.8 4 96,7
1926 102.3 108.7 9.8 107.2 108.2 110.8 111.9 5 08.2
1927 101.5 106.7 160.5 105.8 105.6 108.2 121.4 6 99.8
1928 101.¢ 106.7 103.2 107.8 104.8 105.6 107.1 7 100.5
1928 101.6 108.2 107.8 103.4 8.7 100.8 142.9 8 103.2
1930 99.8 105.5 96.6 102.7 104.6 108.7 2.9 9 W7.8
15831 100.3 95.6 88.9 104.1 81.0 100.6 7.6 10 9.6
1932 97.8 8.6 75.1 89.2 68.6 81.0 2.4 11 88.9
1533 97.2 1.0 76.9 99.7 70.9 68.6 40.5 12 75.1
1934 97.3 97.9 84.6 102.0 81.4 0.9 64.3 13 76.9
1935 26,0 W23 50.6 .3 102.3 31.4 78.6 i4 84.6
1938 99.2 102.2 103.1 97.7 105.9 102.3 114.3 15 80.6
1937 100.3 102.5 105.1 101.1 11¢.5 105.0 121.4 16 103.1
1938 100.3 97.0 96.4 102.3 92.5 1165 8.6 17 105.1
1929 104.1 95.8 104.4 104.4 86.3 92,5 100.5 18 96.4
1640 106.3 96.4 110.7 108.5 93.0 9.3 128.8 19 104.4
1941 7.6 100.3 137.1 111.3 106.6 93.0 238.1 0 10.7
Sum 2015. 1 2013.7 1950.7 2084.8 1941.9 1933.3 2159.7 210 1901.0

100.756 100,685  97.536 104.240 97.085  06.665 107.985 10.500  95.050
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Qur findings can be summarized as follows:

A. Reduced Form Equalions
(8.6) Est. of yu(f) = — 0.059y:(t — 1) + 0.040z(2) + 0.15435(¢ — 1)
— 0.041¢ + 87.932,
Multiple correlation: R* = 0.7546,
(3.7) Est. of :(t) = 0.241y;(t — 1) + 0.041z(¢) — 0.052y,(t — 1)
— 0.253¢ + 80.560,

R = 0.5865,
(38)  Est. of ys(f) = 0.2032(¢) + 0.367ys{t — 1) + 40.731,
R* = 0.8833,
(3.9) Est.of gu(t) = — 0.128ys(t — 1) + 0.0622(8) + 0.180y;(t — 1)
— 0.487¢ + 97.923,
R? = 0.5651,

(3.10) Est. of ys(t) = 0.649ys(t — 1) + 0.1612(2) — 0.287ys(t — 1)

— 0.078¢ + 45.072,
B = 0.6549.

B. The Final System of Structural Equations
(3.1 est.) w(t) = —0.246p(8) + 0.247ys(t) + 0.051ys(t — 1) — 0.104¢
+ 87.677 4+ w(t),

(3.2 est.) w(t) = 0.157y(t) + 0.653y.(t) + 0.33% + 13.319 + ws(D),
(3.3 est.) ws(t) = 0.2032() + 0.367ys(t — 1) + 40.731 + us(t),
(3.4 est.) w(t) = 0.556y:(¢) — 0.300y(t — 1) — 0.190¢ + 81.250 + u,(f)
{this equation may also be written as

w(t) = 0.556[ys(t) — ys(t—1)] + 0.256y:(t—1)

— 0.190f + 81.250 4+ w(2}},

(8.5 est.)  ws(l) = 2.883y.(f) + 0.656¢ — 200.068 + us(t).

A theory of confidence intervals for the parameters has not yet been
worked out. Such a theory is essential in order to ]udge the reliability
of the estimates.

The residuals are given in Table 2.
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. TABLE 2
EsTiMATES oF THE REsipuaLs, u(l)

Year u(t) ua(t) 3{L) wa(f) uslf)
1922 0.14 —1.64 —0.60 1.74 9.64
1923 .16 —0.64 —4.22 3.86 4.9
1924 0.90 0.19 —0.15 4.46 7.26
1925 0.53 1.48 -3.15 —8.12 2.64
1026 2.21 0.22 0.31 —-0.02 ~8.30
1927 0.78 0.31 - —1.50 —0.56 —5.88
1928 0.29 —1.24 3.84 —1.49 —-2.34
1929 —0.52 1.06 0.19 —3.83 —~8.42
1930 —.35 —-0.20 —2.55 —0.16 —9.39
1931 0.30 0.60 -7.10 0.89 —1.11
1932 —0.22 1.86 —8.89 6.20 6.02
1933 0.33 0.42 0.39 1.80 0.74
1934 0.24 —2.40 2.58 —0.77 -9.31
1935 —-1.75 0.30 2.86 —16.75 —1.75
1936 —1.86 0.95 5.92 —8.39 0.59
1937 —1.72 —0.55 1.89 —~7.05 4.56
1938 —0.92 —0.81 I.14 6.00 1.77
1939 1.16 1.47 6.06 4.67 1,37
1940 0.65 —0.45 5.55 5.94 2.68
1941 —0.36 —0.92 -2.59 2.48 4,38
C. Commenis

The main purpose in giving the numerical results above has been to
iliustrate, explicitly, the application of certain methods and principles
set forth in the preceding sections of this chapter. Much careful research,
both in the economic theory and in the statistics involved, is yet to be
carried out before one can draw final, practical, conclusions from the
results obtained.

To those familiar with multiple-correlation results obtained from agri-
cultural data the most striking features of the results above are, prob-
ably, the relatively low values of the multiple-correlation coefficients
{given under A}, and the relatively large residuals (given in Table 2).
A refinement of the economic model involved might improve these
correlations. We should like to point out, however, that when one is
searching for structural econromic relations one cannot in general expect
to find as high correlations as those obtained from a mechanieal appli-
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cation of the method of multiple correlation to the variables in the strue-
tural equations. For the correlations obtained by the latter procedure
are due not only to the occurrence of the same predetermined variables
in the equations of the reduced form, but also to the intercorrelations
between the residuals in these equations. The method of multiple corre-
lation would produce higher correlations at the expense of a bias in
the estimates of the struetural coefficients involved.
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1. Tae ConcEprT OF A CoMPLETE MODEL

1.1 The joint distribution of the observations. The solution to a problem
of statistical inference in any field must ‘be based on a consideration of
the process that yields the observations from which the inference is to
be drawn. It is sometimes useful to think of the scientist and nature (in
our case, society) as cooperating in the process of obtaining observations.
Three aspects of the generation of observations may then be delineated.
First there are the processes of nature whereby the quantities to be
measured are generated. Then there is the control over these processes
exercised by the scientist through experimental techniques. Finally there
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is the matter of measurement itself, the measurements being made by
or for the scientist but their exactness not entirely controlled by him.
In some fields the experimental control exercised by the scientist is a
more significant factor than in others. In economics it is of much less
significance than in most. But in all cases the choice and the usefulness
of a method of estimation or of testing hypotheses depend on the char-
acier (assumed or known) of the process generating the observations.

Modern theories of statistical inference describe the generation of
observations by the hypothesis that there exists for any given number
T of observations an {unknown) joint probability distribution function
Fr(x} of as many variables £ = (2, z2, - - , ) as there are observa-
tions, and that the observations actually obtained constitute one (multi-
variate) random drawing from this distribution. The extraction of
knowledge about that distribution from the observations is aided by
specifying a set §r of distribution functions, of which the distribution
function Fr(x) generating the observations is assumed to be an element.
The set §r represents the a priori knowledge or hypotheses the statisti--
cian feels justified in specifying regarding the processes that yield the
observations, either because he places confidence in these hypotheses
or because he wishes tentatively to explore their implications. The latter
wish may be motivated by the fact that the hypotheses made facilitate
his reasoning and by the hope that some of the conclusions remain
approximately valid under more general hypotheses.

We have used the term ‘“multivariate random drawing’’ above to
leave no doubt that we include cases in which Fr(z) is such that “‘suc-
cessive” observations 1, 22, - - - , zr (which may again be multivariate
themselves) are statistically dependent..The more common term “‘ran-
dom sample” has sometimes been employed so as to imply the case of
independence and constancy of the distribution functions of “‘succes-
sive” observations. In that case §r is specified to be such that every
Fy(z) in it can be written as a product

(1.1) Fr(z) = flx)) f(xs)- .. -f(zr)

of T factors each of which is a value assumed by the same function, f(z).
From now on, however, we shall use the term ‘“‘sample” for a multi-
variate drawing z from a distribution Fr(zr) without thereby implying
either that a factorization (1.1) is prescribed by §r or that, where a
factorization does exist, the functions f,(z,) that enter into the factors
are necessarily the same for different ¢, The case where the function
fi(z,} varies with ¢ is of particular importance when “successive’ ob-
servations z;, #,, - -+ , zr relate to successive points or periods of time.
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1.2. Strueture and model. It has already been argued in Chapter 1
{see Sections 3, 8, and 9) and Chapter II (see Sections 1, 3, and B) of
this volume® that the a priori knowledge about the distribution Fr(x),
embodied in the set §r, must be derived from information or assump-
tions concerning the underlying economic structure whenever the pur-
poses which statistical estimation is to serve include the prediction of
the effects of economic policies or other given changes in structure. We
shall now make this notion of a structure more specific by describing the
types of structure to be considered in this chapter.

Let an economic theory specify the existence of a set of functional
relations, each expressing an aspect of the economic behavior of a group
of individuals, firms, or authorities. The variables entering into these
relations consist of;

(a) A set of G “true” (latent) endogenous variables 5., (g =1, ---,G),
whose formation the theory is designed to explain. These differ only by
errors of observation [listed under (d) below] from the observed endegenous
variables y,; .

(b) A set of K “true” (latent) exogenous variables {e: (k = 1, -+ - , K),
which the theory regards as given for purposes of explaining the forma-
tion of the 3, . These differ only by errors of observation [also listed
under (d) below] from the observed exogenous variables Z, .

(c) A set of G unobserved (latent) variables u, (g = 1, -+ -, G), to be
called disturbances (or shocks), which represent the aggregate effects of
additional unspecified exogenous variables on the economic decisions
expressed by each relation.

(d) -A set of @ + K unobserved (latent) variables v, (g = 1, --+, G)
and we, (kb = 1,---, K) representing errors of observation in the ob-
served variables y,, and Z., respectively.

Examples of such equation systems have been given in Chapters 1
and TI. We shall use vector notation’ to represent by one symbol the
members of each class of variables, as follows:

Ye = [y Yu - Yal, Zi=[Zy - Zxd,
(1-2) U = [uu s ua:], v = [Uu T va:},
Wy = [‘wu Lot 'wit]-

The subscript ¢ refers to the time point at which or period for which the
variable in question (stock or flow, respectively, as the case may be)

3 See also Koopmans and Reiersgl [1950]-
3 Matrices are denoted by capitals, vectors by smgll letters. Vectors are to be
thought of as row vectors (one-row matrices) unless otherwise specified.
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is measured. We shall employ a discrete notion of time,' choosing the
unit of time so that the elementary period of observation is one time
unit and letting stock variables with subscript ¢ be measured at the be-
ginning of the period of measurement of flow variables with subseript ¢.

With this notation, let the system of behavior equations be written

-hx(m,m~1,"' s Mo 38, m o, $io ;U 0n) =0,

(L) e
ho(e, nery -~ s e 380, v 0, b1 jUgr  @g) = 0
t=1---,T).
Here the symbols k, (§ = 1, ---, G) denote given scalar functions of

the variables shown in parentheses, and the symbols o, (g = 1, -+ , @)
denote vectors of unknown behavior parameters (such as elasticities of
supply or demand), assumed to be independent of ¢. The behavior equa-
tions are written in terms of the “true” endogenous and exogenous
variables, which are connected with the observed variables by

Yo = m¢e + v, Zy={:+w,
(t=1_rus"'50:1:"'111)-

Both endogenous and exogenous variables are assumed to affect economic
decisions with or without time lags, all lags being integral multlples of
one unit of time. The longest lag occurring has been denoted +°. Finally,
it is assumed that the system of equations (1.3) for any time £ can be
solved uniquely for the so-called jointly dependent variables 15 (g = 1,
» @) of that time { whatever the values assumed by all other variables
a.nd parameters occurring in (1.3). If this were not true, the set of equa-
tions (1.3) would not represent a theory of the formation of the jointly
dependent variables.
Let our economic theory specify further that there exists a joint dis-
tribution function of all latent variables occurring in (1.3),

(L4)

; Q(u1,'---,u,~;v;,---,vr;wl,--- yWr M3, """, M
1.5)

;-1—1'“'.-“' p 0,81, :;T)'
We do not need to include #; , - - - , yrin (1.5) since, by assumption, the

values of these variables can be solved from (1.3) in terms of variables
included in (1.5).

Now we shall speak of a structure Sy if we have assigned specific nu-
merical values to the parameter vectors o , - - - , @¢in (1.3) and a specific

* For a discussion of a continucus notion see Koopmans {1950b].
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function (given also by numerical parameters, or by a graph or table)
@ in (1.5). A structure thus consists of two elements, a specific set of
structural relations, (1.3) and (1.4), which permits determination of all
observed variables from given values of all latent variables, and a specific
joint distribution of latent variables. In particular, we speak of a complete
structure because the structural equations (1.3) and (1.4) account for
the formation of the values 41, -- -, yr of all endogenous variables in
terms of latent variables whose distribution is given in (1.5},

Generally, the structure Sy is unknown, just as in the more usual
formulation of estimation problems the distribution Fr of the observa-
tions discussed in Section 1.1 is unknown. In that discussion we used
the notion of a set §r of distribution functions to represent the a priori
knowledge or hypotheses coneerning the generation of the observations.
Similarly, we now introduce the notion of a set &, of structures 'Sy,
also to be called a model ©r. A model 1s obtained if, for instance, we
leave certain elements of the parameter vectors oq, ---, ag in (1.3}
unspecified, or restricted only as to sign or by other inequalities, and if
we indicate a set - of distribution functions @r of latent variables
(such as, for instance, the set of joint normal distributions of u, v, w
with zero means). In particular, if all structures in the model are com-
plete, the model itself is called complete. The model incorporates all of
the a priori knowledge or hypotheses the statistician chooses to recognize
as an aid in estimating that structure Sr which has generated the ob-
servations or in estimating those parameters of Sy in which he is partic-
ularly interested.

1.3. The complete linear model without errors of observation. Weshall now
describe a particular model for which estimation methods have been
developed in detail. This model, which from now on we shall denote by
©r, assumes linear structural equations and disregards errors of ob-
servation. In Chapter VII methods are discussed for estimating the
parameters of nonlinear structural equations, methods suggested by
those for estimating linear equations presented in this chapter. A model
with errors of observation is also considered in that chapter.

That errors of observation are disregarded in this chapter does not
imply an a priori judgment that such errors are less important, in their
effects on the choice of estimates and on the quality of these estimates,
than disturbances in economic behavior.” This must be regarded as an

5 I might be thought that with gradual improvement in the methods of data
collection, errors of observation would after a lapse of time be less important
than the random elements intrinsic to economic behavier. However, as Reiersgl
has pointed out to one of the authors, as observations improve in accuracy and
coverage, it will be posgible to introduce more explanatory variables in each equa-
tion, thus reducing the variances of “unexplained’’ disturbances in behsvior.
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empirical question, to be settled by methods of inference based on models
recognizing errors of observation as well as disturbances in behavior.”
The emphasis on disturbances in this and other chapters of this volume
must be regarded rather as a matter of tactics. “Shock-error models”
are complicated. To prepare for their study one can develop many rele-
vant concepts and methods from “shock models” without errors. Other
studies’ have been devoted to “error models” without shocks. Finally,
even the models recognizing only shocks present a number of features
perhaps specific to the measurement of economic relations, where vari-
ables are formed by the interseetion of many behavior schedules. The
implications of these features were pointed out clearly by Haavelmo
{1943, 1944}, whose penetrating analysis initiated the developments in
methodology reported in this volume.

If we omit errors of observation and make the structural equations
(1.3) linear, they can be written in the form

M
1M‘n
7
|

E 311'0 ysl + E Z Bllrytl—t + T +

i=1 r=1

(1) o e
g 0
Zﬁam’ya + Zl Z_;.ﬂa"y‘,eq + Yoo + El Z.; ¥ ekrZri—r = Ugt

t=1...,7).

In order that, for any ¢, these equations can be solved for the variables
Y1 , it is necessary and sufficient that®

Buo ... ﬁmo-l
e #0,
Gl0 v Baao_l
a specification’ that we shall incorporate in the model &r.
We shall also make the model narrower in regard to the set Q of dis-

tributions @ of latent variables (besides omitting observational errors).
To introduce these further specifications we first write the distribution

(L.7) det By = det

¢ For a discussion of ‘‘shock-error models’” see Anderson and Hurwicz [1947].
Further work, as yet unpublished, has been done on this subject by Reiersgl.

? Tintner [1945, 1946a, 1946b], Wald [1940), Geary [1948, 1949], Koopmans
{1937].

* The symbol det B denotes the determinant associated with the square ma-
trix B.

* This specification implies the requirement, stated in Chapter II, Section 3,
that each endogenous variable appear without time lag in at least one equation.
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of latent variables as the product of the conditional distribution of dis-
turbances for given values of the exogenous variables and the marginal
distribution of the exogenous variables. In this formulation we include
with the exogenous variables, arrayed to form a vector Z, these values
of the variables y, pertaining to times ¢ = 1 — 7=, -, 0 anterior to
the period of observation, because their formation is not explained by
(1.6). We then have

Q(uli”'7uf;yl—r‘31"')yﬂ;fl—rnj"')20;2!)".:'21")
1 = -
(1.8) = QP , -, ur |10, 0 Yo s Bioen, o0, 1)
{2) - —
Q@ (W, Yo Fm, oo, Er)

While any joint distribution of two sets of variables ean be written in
this way,"” the advantage of doing so in this case arises from the next
specification we shall make about the conditional distribution of the
disturbances. We shall specify that this conditional distribution is in
fact independent of the values given to the exogenous variables in its
definition,

(1.9) QW (ur, -, ur | faoes, o0, E) = Qlwa, -+, U

The meaning of this specification'' is that we assume not only that the
exogenous variables Z are not affected by the endogenous variables y,
(t =1, ---, T) but also that there are no ulterior common causes in the
generation of the exogenous variables 2, on the one hand, and of the dis-
turbances u; (¢t = 1, ---, T), on the other, that create a statistical de-
pendence between these two sets of variables."

As has been pointed out by Hotelling in another context [1940, in
particular pp. 276-277], the specification (1.9) makes it possible to put
the study of the properties of estimates of the coefficients B, ¥u,
%eks , to be undertaken in this chapter, in a form independent of the
distribution function Q. We need merely stipulate that, throughout
the discussion of sampling properties of estimates, repeated “multi-
variate random drawings” as discussed in Section 1.1 relate only to the
distribution @(u; , - - - , ur) of disturbances. Sampling variation in these

10 Spe Wilks [1943, Section 2.4} or Cramér [1946, Sections 21.4 and 22.1; especially
equations (21.4.10) and (22.1.1)].

1 In Chapter I1, footnote 5, this specification is treated as part of the definition
of an exogenous variable.

12 The inclusion of yi_,o , - - - , ys among the exogenous varisbles 2 in this state-
ment is based wpon an anticipation of the next specification (1.10). Without this
specification we should either have to omit the “anterior’” values of y: from (1.9)
and treat these variables as endogenous or specify rather arbitrarily that the
disturbances . (£ 0} are independent of the disturbances u, (¢ » 1).
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variables induces sampling variation in the endogenous variables y,
{t =1, ---,T), while the values assumed at all times by the exogenous
variables 7 are held fixed. If in truth the exogenous variables Z are subject
to & probability distribution @, we choose to study the sampling proper-
ties of our estimates in a particular subeclass of all possible samples:
viz., the class of those samples in which all exogenous variables z take
on the same values as they exhibit in the sample actually obtained. The
opportunity to do so on the basis of some specified distribution
Q(u, , - - - , ur) of the disturbances arises precisely from the independence
assumption (1.9). If the u, are independent of the variables Z, holding
the latter constant does not affect the distribution of the former. Of
course, the properties of the estimates obtained will be found to depend
on the values® assumed by the exogenous variables 2.

Finally, again following the tactics of dealing with the simpler cases
first, we shall specify that successive disturbances are independent of
each other,*

(1.10) Qus, -+, ur) = Qulw)- ... -Qu(u))- ... -Qrlus),
and further that their distribution is the same for all time periods,
(1.11) Qe(u) = Qur) t=1,.---,T)

These specifications will be further weakened in Chapter VII. In most
‘of the present chapter we shall go so far as to specify that the distribu-
tion of the components w,, of the vector u, is normal, with the following
parameters M

(1.12) Eug, = 0, SHMHM = Ggh

13 In particular, as noted in Chapter II, footnote 7, if these values happen to
satisfy linear restrictions of a certain type, they may give rise to nonidentifiabil-
ity of parameters f,:, , ¥¢- from repeated samples of the type described, where
z-values not so restrained would permit identifiability. See also Section 5 below,
footnote 54.

14 Specification (1.10) has been criticized by Cochrane and Orcutt [1949; also
Orcutt and Cochrane, 1949] on grounds of insufficient realism. They have studied
the estimation problem in which Q{u; , - -+ , ur) corresponds to a simple stoehastic
Markoff process with known serial correlation. Preliminary studies by Chernoff
and Rubin have suggested that, when this serial correlation (in the case of vectors
u¢ , the serial correlation matrix) is unknown, a complicaied identification prob-
lem is encountered, while the derivation and computation of maximum-likelihood
estimates is only made more cumbersome than in the case without serial correla-

- tion in the u, . '

* The symbol & is an operator denoting that the expected value (mathematical
expectation) is to be taken of the random variable following the symbol. See, for
example, Cramér [1946, Sections 15.3 and 15.4].
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One of the purposes to be served by the specification of normality is to
suggest a method of estimation. The properties of the estimates obtained
by this method in sampling from a strueture with nonnormal disturb-
ances are studied in Chapter VII.

1.4. The a priori resirictions. All of the specifications introduced so
far will be maintained in all versions of the model @r used in the estima-
tion theory developed in Sections 5-7 of this chapter. Further specifica-
tions made may differ between different models used. It has been pointed
out in Chapter 11, Section 4, that without additional restrictions on at
least some of the parameters 8y , Yoo, Fokr » Ton , DONE of the structural
equations is identifiable. It is therefore assumed that information is
available, from economic theory or other sources outside the observa-
tions, that can be put in the form of a prior: resirictions on the pa-
rameters.

Apart from one remark at the end of Section 5.7, we shall not place any
restrictions on the matrix £ = [o,4] of variances and covariances of the
disturbances, except that this is specified to be a symmetric, positive
semidefinite matrix,'® because otherwise it could not be the covariance
matrix of a normal distribution in ¢ latent variables. We do not through-
out require Z to be nonsingular, and hence positive definite, because
we wish to admit models containing identities. These are structural
equations without disturbances and with numerically given coefficients
that arise directly from the definitions of the variables involved. Rows
and columns of T corresponding to these equations consist of zeros only.
However, in models from which the identities have been removed by the
elimination of an equal number of suitably chosen variables, we do re-
quire the covariance matrix = of the disturbances of the remaining be-
havior equations to be nonsingular. This expresses the assumption that,
while disturbances in different types of economic decisions may be statis-
tically dependent (correlated), we do not allow the disturbance in one
behavior equation to be funetionally (in a joint normal distribution this
can only be linearly) dependent on those in other behavior equations.”’

We shall consider restrictions of a simple form on the coefficients
Bair s Yoo s Tokr, Tequiring that the coefficients designated by certain
combinations of subscripts, given in advance, be zero. These restrictions
express information as to which variables are excluded from which be-
havior equations. More general restrictions, requiring that a given linear

16 For definitions of positive semidefinite and positive definite matrices, see
Appendix B.

17 For a more detailed digcussion of the nonsingularity assumption regarding
¥, see Koopmans, Rubin, and Leipnik (1950, Section 1.7].
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function of the coefficients of a given equation be zero, often arise from
the removal of identities by elimination of variables or may sometimes
be based on technological information. Identifiability criteria and estima-
tion theory under such restrictions are only slightly more complicated;
they are discussed in Koopmans, Rubin, and Leipnik [1950, Sections
2.2.2 and 4.2}. In this chapter, we seek simplicity of exposition by ad-
mitting only restrictions that require certain specified coefficients to be
zero. The computational procedures described in Chapter X admit more
general linear homogeneous restrictions.

A structural equation is not essentially altered if all of its coefficients
are multiplied by the same number (different from zero), provided that
corresponding adjustments are madé in the elements of £. Whenever
we wish to avoid this trivial indeterminacy, we add to the a priori re-
strictions a normalization rule for each equation—for instance, by pre-
scribing the value 1 or —1 for a given coefficient. Since this must be a
coefficient that does not vanish in the true structure, it is a good practice
to select for this purpose the coefficient of that variable with which the
class of decisions described by the equation is concerned.

“In order to retain flexibility in the choice of methods of estimation
we shall sometimes use models & that specify only a suitably chosen
subset of the set of all a priori restrictions that might be given.

LS. Jointly dependent and predetermined variables. It will be convenient
to use various notations and terms for significant sets of variables and
parameters, For instance, we shall, where necessary; distinguish the
parameters 8y:: , ¥s0 , ¥t from other parameters by referring to them as
coefficients (i.e., of the structural equations).

With the kelp of coefficient matrices

I_.Bm 2 ﬁw,‘l
B.=)............. ‘73
I_ﬁcnr o 3aar_|
Fur c Time ]
T,=)............. ,
Yerr - ’T’Gi:_l
the structural equations (1.6) can be written in the matrix form

(1.14) By: + Biyis + -+ + By o -+ vo + oz}
+ Dagics + -+ + Braziye = ul t=1,---,1),

(1.13)
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where y, , 7., u, denote the column vectors obtained by transposing the
row vectors ¥ , Z: , %; , respectively,

The distinction between endogenous variabies y,_, and exogenous
variables Z,_, is independent of the time lag, = 0, 1, ---, 77, with
which the variable in question oceurs in the equations. We arrive at
another important classification, which is associated with the timing
7, if we apply Simon’s analysis of causal ordering of sets of variables,
described in Chapter II1, to equations (1.14) for all stated values of ¢.
In a simple case where 7= = 2 and 7' = 4, the coefficient matrix of these
equations can be written (if 7 denotes the unit matrix of order ():

Endogenous

. Exogenous Variables and Disturbances
Variahles

2 2 W U2 U3 Uq

-
1
8

o Y Y Ya (Y Yo 1 4 3 2

(1.15)
B B: By v T Tt fo _ -1
B Be B, o : Tn To =TI
B Bi Be ¥ r: i‘n _ ~TI
B: Bi Bo vl T: » To -1

Here we have classed under the heading “‘exogenous variables and dis-
turbances” all variables whose generation is not desecribed by the equa-
tion system. In Simon’s terminology, these variables constitute the zero-
order set of variables in the causal ordering. It is seen directly from (1.15)
that the sets of variables comprised in the vectors 1, ¥z, - , ¥, - --
constitute the first order, second order, ---, fth order, - - sets, re-
spectively, in the causal ordering.’*

Fixing attention now on equations (1.14) for a particular time period
t, we call jointly dependent, or simply dependent, the variables™ y, of the
highest order (tth order) causal group occurring in these equations and

% Of course, each set y, may split into two or more subsets as a result of the re-
strictions on the elements of B; .

1 The reader should be warned of a subtle shift in the meaning of the term
“variable’’ from the distinction between endogenous and exogenous variables, on
- the one hand, to the distinction between dependent and predetermined variables
on the other. y,_, is endogenous whenever 1 ¢ — r < T'; hence the endogenous
character of a y-variable depends only on the time at which it is observed. The
same ¥, i8 dependent only if both r = 0 and 1 £ t £ T'; hence the dependent
character of & y-variable depends on the timing both of its observation and of the
equation (as read from the term u.) in which it oeccurs. The expression ““dependent
variable’' is therefore strictly defensible only if we think of a variable as a time
series of 7" observations such that y. (¢ = 1, --- , T) is a different variable from
v (t =1, ---, T). It is in this sense that expressions such as ‘‘moments of the
predetermined variables’’ and ‘‘lagged endogenous variables’ must be understood.
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of which the generation is described by those equations. On the other
hand, we call predetermined (as of time ¢) all variables® y,_, (r =1, -,
), B (r=0,1, -+, D) occurring in the same equations and belong-
ing to lower-order causal groups. We also regard as predetermined (and,
in fact, as exogenous) the dummy variable “1,”* which assumes the value
of one for all relevant values of ¢.

The predetermined variables, say K in number, will be denoted by
the symbols

2 = [y ey 1 2 Zea o+ 2]
(1.16) t —1 =10 . 2 £
=[n 2z -+ zgl

If we introduce corresponding symbols

(1.17) B = B,, I's[B, -+ Bo 7y Do Ty --- T

for the coefficient matrices, the system (1.14) can be written in the form
(1.18) OBy 4T = t=1,---,7),

which recognizes only those distinctions between variables that will turn
out to be essential for the large-sample estimation theory of the pa-
rameters B, T, Z.

As will become clearer in subsequent sections, the distinction between
predetermined and dependent variables derives its significance from the
important fact that, for any value of ¢, the disturbances u, are dis-
tributed independently of all predetermined variables,

(1.19) Qu: | z) = Q(wi).

For the exogenous variables this is implied in specification (1.9). For
the lagged endogenous variables it is a consequence of their lagged char-

acter: ¥i..1, Ye—2, - -- can be solved from (1.14) in terms of exogenous
variables Z,,, Z,—», - -+ (of which %, is independent no matter what
their timing is) and disturbances %.,_;, %, s, - -+ [of Which u, is inde-

pendent by specification (1.10) because their timing precedes that of u,].
For certain purposes, such as the estimation of the elements of %,
even this distinction is irrelevant. We then adopt the notation

{1.20) zo =y 2, A=[B T]

2 It would be logical in this connection to include also the disturbances u,
with the predetermined variables. However, to do so would deprive us of such
convenient expressions as the coefficients or the (observed) moments of prede-
termined variables.
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to write the system (1.18) in barest outline as

(1.21) AT: = u; t=1,---,1).
Finally, we shall in Section 5 use vector symbols
vy=1[n - wi
(1.22) g=(hwe -+ Yo Zi_m <+ B 2 -+ Zq,
r=1ly 3,

to summarize the whole set of the observations on endogenous, exog-
enous, and all variables, respectively.

1.6. The reduced form and the joint distribution of the observations. For
a given structure in the model € , that is, for a given covariance matrix
Z of the disturbances u; and given values of the parameters B and I’
{where B must be nonsingular), the structural equations (1.18), shown
in greater detail in (1.14), make it possible to determine™ the joint dis-
tribution of all endogenous variables y, ({ = 1, - :- , T') conditional upon
given values of the exogenous variables Z. However, knowledge of the
structural equations (1.18) is not necessary for that purpose. Any set
of (7 independent linear combinations of equations (1.18) can serve the
same end (provided that the joint distribution of the disturbances is
replaced by the corresponding distribution of the same linear combina-
tions of the disturbances). It is, of course, for this very reason that in
order to solve the reverse {identification) problem (i.e., the determina-
tion of B, T, = from knowledge of the distribution of the observations)
one needs additional & priori restrictions on these parameters.

One particular representation of the joint (conditional) distribution
of the observations is obtained by choosing those linear combinations
of equations (1.18) that solve the equations for the dependent variables
¥: . In matrix notation, this is done by premultiplying both members of
(1.18) by the inverse B~ of B, which yields

(1.23) ye = Mz, + ot
where
(1.24) I1=-B7'T, vy = B .

Equations (1.23) are called the equations of the reduced form associated
with the structure (B, I, 2). The disturbances#, of the reduced form are

# This task is actually carried out in Appendix C.
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linearly independent combinations of the disturbances u, in the structural
equations. Hence,” if the u, are normally distributed and independent
for successive values of ¢, so are the v, . In any case, the elements of »,
have zero means and a matrix of second moments,”

(1.25) €@ = &@w) = (B 'wiu,B ™) = B (8uw)B' ™ = BZB,

which is nonsingular whenever Z is nonsingular. Likewise, as a conse-
quence of (1.19), they are distributed independently of the predeter-
mined variables,

(1.26) Q(vt | 2y = Q(U:)-

An important property of the reduced form is that it is uniformly
identifiable: only one unique set of parameters II, @ of the reduced form
can be associated with a given distribution function of the observations.
This follows from the fact thatits parameters can be obtained from certain
conditional expectations in the distribution of the observations. Accord-
ing to (1.23) the conditional expectation of y, for a given value of 2, is

(127) 8y | 20 = 8(ILZ + vi|2) = I,
stnee by (1.26)
&(vilz) = &, = 0.

Now whenever the distribution function of the observations is known,
the conditional expectation &(y: | z,) can be determined as a function of
z, . Hence TI is identifiable for every structure in the model ©;. By a
similar argument, we find that

(1.28) Q= 8@iv) = &{ Iyt — 8y | 2} ys — 8y |2} | 2}

is uniformly identifiable,

It follows that the parameters II, £ of the reduced form constitute a
unique characterization of the distribution of the observations in our
model &€, . They are therefore a useful point of departure in establishing
criteria of identifiability, and are used as such in Section 4.4. They have
also been used by Anderson and Rubin [1949, 1950} as the point of de-
parture of a method of estimating the coefficients of one identifiable
structural equation in a complete structure. This method, originally
called the reduced-form method for that reason, is discussed in Section
6, from a somewhat different point of departure, under the name limited-
information maximum-likelihood method.

2 See Cramér {1946, Section 24.4].

71 yly, is a matrix of rank one with typical element v ;. . Henee &(vi2,) denotes
the matrix of variances and covariances of the v;;.
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2. TeE PurrosSE oF EsTIMATION

The choice of parameters to be estimated, and of methods of estima-
tion to be used, is necessarily guided by the purpose that the estimates
are to serve. As shown by examples in Chapter I, this purpose is almost
always prediction, directly or ultimately, of the values of endogenous
variables.

It has been stressed by Erling Sverdrup [1949, 1951] that, if a direct
prediction problem of this kind can be isolated and specified, the choice
of a method of estimation should be discussed in terms of desired proper-
ties of the joint distribution of the prediction(s) made and the realized
value(s) of the variable(s) predicted. In particular, in a precigely defined
prediction problem of this type, one may know the consequences of
various possible errors of prediction and would then be able to use pre-
dictors minimizing the mathematical expectation of losses due to such
errors. Abraham Wald {1939, 1945, 1950¢], among others, has proposed
methods of statistical decision-making designed to accomplish this.

The more classical methods of estimation applied in this volume are
not as closely tailored to any one particular prediction problem. Directed
to the estimation of structural parameters rather than values of endog-
enous variables, they yield estimates that can be regarded as raw ma-
terials, to be processed further into solutions of a wide variety of pre-
diction problems—in particular, problems involving prediction of the
effects of known changes in structure. The similarity to raw material
production is close. For example, it might be economical to have a greater
variety of steels produced if the quantities required in the most ap-
propriate uses of each of them were to be large enough to sustain a level
of production justifying the separate effort. However, in fact the number
of qualities of steel produced is limited by the diversity and unpredict-
ability of uses that do not individually justify the separate development
of a steel-making formula. Similarly, the “knowledge” represented by
estimates of structural parameters consists in the possibility of solving
with limited additional effort a variety of prediction problems, although
for some of these problems more satisfying solutions might have been
obtained by allowing the requirements of each to guide the choice of
estimates or predictors,

If this view is taken, the properties of estimates that we regard as
desirable do not follow with precision from the broad elass of applications
envisaged. In view of the mathematical difficulties in meeting any pre-
cise requirement, this circumstance is really to be welcomed. It leaves
the door open for adopting certain properties of estimates as desirable,
properties which in certain eircumstances we know how to attam. In
the next section a number of such properties is listed.
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3. DESIRABLE PropERTIES OF ESTIMATES

In vague terms, the requirement that we shall impose on our estimates
is that their deviations from the true parameter values be, in some
average sense, at least as small as those of alternative estimates, ai least
in large samples. The lack of preciseness in this statement may be rem-
edied by offering definitions of a number of properties of estimates that
will be regarded as desirable.” All of these properties relate to the
sampling distribution of the estimates. In the present chapter, therefore,
these properties must be interpreted with reference to the notion of
(imaginary) repeated samples, described in Section 1.3, in which the
values of the exogenous variables remain the same,®” while the values of
the disturbances are thought of as random drawings from the joint
distribution of the disturbances.

The order in which the desirable properties are listed is primarily one
of decreasing generality in the models for which we know how to obtain
estimates with these properties. If the order had been chosen on grounds
of mathematical simplicity of definition rather than of attsinability,
the small-sample properties would have been stated before the asymp-
totic properties,

Consistency. An estimate of a parameter is said to be consistent if, in
the sampling distribution of that estimate, the probability that the ab-
solute value of the discrepancy between the estimate and the true param-
eter value be less than any given arbitrarily small positive quantity
approaches unity as the size of the sample approaches infinity. In sym-
bols, if P{E} denotes the probability of an event F, an estimate hr of
a parameter ¢ is consistent if, for all 8,

3.1) lim P{| hr-— 8] < e} =1,
T—rats

where T is the sample size, and ¢ is any positive number, however small.
If kr has this property it is said to possess the probability limit 8, and
this relationship of Ar to 8 is also denoted

(3.2) plim %y = 6.

T

Asymptotic normality. A statistic kyris said to be asymptotically nor-
mally distributed if there exist two sequences of numbers y; and o7 (where

2 These properties of statistics are discussed in many textbooks. See, for ex-
ample, Cramér [1946], Mood [1950], and Wilks [1943].

% In Chapter VII, Section 5, this assumption is weakened to the existence of
certain probability limits for certain moments of exogenous variables.
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or > 0) such that the following limits exist:

33) lim ny = 7, lim o7 = o,

T— T s

where 0 < ¢ < o, and such that, for every A, and .,
. ar ogr Ay 1 2
4 l P — R < h < = Ao | = —_— —iz X
(3.4) rl-I}:u (71'1' + \/T 1§ hr S9r ‘\/T )\-) . _\/21‘_ € dx

This says that the probability distribution of hr approaches more and
more closely a normal distribution with mean 5r and standard deviation
or/A/T as T becomes larger and larger, and that the mean . and the
quantity or associated with that normal distribution approach finite
limits. If by is asymptotically normal with = 8, then hy is a consistent
estimate of 8.

Asymptotic normality, while not of great importance from the point
of view of the purpose of estimation, is a very convenient property in
an estimate. Besides making available an asymptotically correct table of
percentile points, this property has mathematical advantages, one of
which is that it simplifies the definition of the important property of
asymptotic efficiency. All of the estimates we shall study have the prop-
erty of asymptotic normality under the assumptions of the present
chapter, and they retain that property in most of the cases considered in
Chapter VII.

If an estimate Ay lacks the property of consistency, this may be so
because it does not possess a probability limit, or because it possesses
a probability limit n that differs from the parameter 6. Only the second
possibility is open if hr is asymptotically normal. In that case we call
kr asymplotically biased and v — 8 its asymplotic bias.

Asymptotic efficiency. We shall define this as a property possessed by

a consistent and asymptotically normal estimate in comparison with all
other consistent and asymptotically normal estimates.

" An asymptotically normal estimate Ar (characterized by # and ¢ as

defined above) is said to be an asymptotically efficient estimate of a

parameter & if it.is consistent (4 = @) and if, for any other asymptotically

normal and consistent estimate (characterized by o' = 8 and ¢'), we
have
(3.5) o 2o

This says that, asymptotically, no rival estimate in the category of com-
parison has a smaller standard deviation. This, of course, is a very de-
sirable property for an estimate to have if the sample size is such as to
give a reasonable degree of approximation to the asymptotic distribution.
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In the light of the foregoing statements and distinctions we may
reasonably ask why asymptotic efficiency is not the one large-sample
property sought. The answer lies in the nature of the compromises which
have to be made in the situations {facing the statistician. Illustrations of
such compromises are the following. To have asymptotically efficient
estimates may sometimes require a more costly estimation procedure
than is possible or desirable under the circumstances, or it may require
solution of mathematical problems so far too difficult to handle. The
attainment of asymptotic efficiency may also depend on information that
is not available. In particular, the asymptotic efficiency of certain esti-
mates may depend on assumptions concerning the distribution function
of the population, which in some situations one is not in a position to
make. Thus, some methods of estimation will be considered, particularly
in Chapter VII, under circumstances where they do not yield efficient
estimates even asymptotically.

We now mention two properties of estimates for samples of given
finite size (of which the second is particularly desirable) which we know
how to aitain only under rather restrictive assumptions as to the model.
These properties are

1. Unbiasedness. An estimate is unbiased for a sample size T (as
distinct from asymptotically unbiased) if its expectation in such samples
equals the true parameter value

(3.6) Ehr = 6.

2. Efficiency. An estimate hr is efficient in samples of size T {as dis-
tinet from asymptotically efficient) if, in sueh samples, the ratio of its
variance about # (mean-square difference from 6) to the variance about
0 of any other estimate Ay of the same parameter is not greater than one,
ie., if

. &(hr — 6)°
@7 s —op S L

Sometimes a property analogous to efficiency can more easily be at-
tained with reference to a more limited class of estimates. The property
of best linear unbiasedness, defined in Section 4.1, is of that type.

It must be stated at the outset that disappointingly little is known
about the small-sample properties of the estimates considered in this
chapter apart from those simple cases where unbiasedness, or best
linear unbiasedness, can be proved. Studies by Hurwicz {1950¢] and
Leipnik [1947] of simple one-equation models with a lagged endogenous
variable create a presumption of considerable bias, in samples of moder-

]
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ate size, whenever lagged endogenous variables are present. Further
light is thrown on this question by sampling experiments reported in
Cochrane and Orcutt [1949] and Orcutt and Cochrane {1949].

4. THE EXTENT T0 WHIicH LEAST-SQUARES METHODS 0F ESTIMATION
ARE APPLICABLE

4.0. Iniroduction. Since the method of least squares has been widely
used in econometrics and is well known generally, it is perhaps useful to
open the discussion of estimation methods with an investigation of those
estimation problems, arising with respect to the linear models under
consideration, for which this method will yield parameter estimates
having desirable properties.

We consider first the properties of least-squares estimates of the
parameters associated with certain classes of single-equation models,
and next the properties of such estimates of the parameters of the re-
duced form in models &, consisting of several linear equations. It will
be shown that these least-squares estimates possess one or several of
the desirable properties we seek. We shall then argue that “direct” least-
squares estimates of the coefficients of any structural equation (in the
class of structures €7} do not, in general, possess even the weakest of
the desirable properties, namely consistency.

We shall also show how any identifiable coefficient of a structural
equation can be determined from the coefficients of the reduced form,
should the latter be known. This suggests that, when structural parame-
ters may be presumed to be identifiable, estimates of them may be de-
rived indirectly from least-squares estimates of the reduced-form param-
eters.

We shall determine in which cases such an indirect use of the least-
squares method of estimation is possible. To anticipate the result here,
this indirect least-squares method of estimation will be found feasible
for any structural equations for which the number of coefficients that
are prescribed to be zero {more generally, the number of linear restric-
tions on the coefficients) is just enough to produce identifiability. We
shall refer to this as the case of minimum requisite information. For
the case in which more restrictions are imposed (the case of extra infor-
mation), we shall in Sections 5 and 6 apply the maximum-likelihood
method of estimation (which again reduces to the indirect least-squares
method in the case of minimum requisite information).

4.1. Properties of leasi-squares estimates in single-equation models. We
shall consider first the properties of least-squares estimates of the co-
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efficients in models involving a single equation,
(41) Y — MByg — Wedpe — *° — WgEp = U (t = 1, Ty T):

since such models provide the simplest and most familiar setting for
the application of least-squares methods. The endogenous variable y,
and the disturbance v, are here considered as scalars; assumptions about
the zg, will be formulated below. The least-squares estimates p., - -- , Px
of w1, - - -, #x are defined as those values of m, - -+ , wx which minimize
the sum of squares

T
{4.2) E (g ~ 712 ~— -+ — TxZx)’
=1

An over-all view of the properties of least-squares estimates can per-
haps be gained most readily from the following summary of a number
of theorems which have been proved elsewhere.”

Consider the following pairs of alternative specifications:

(a) The joint distribution of the v, 1s the result of independent and
identical normal distributions of all v, (¢ = 1, ---, T), with mean
&y, = 0 and variance &7 =

{A) ‘The joint dlStleuthIl of the v, is not speclﬁed to be normal; the
v, are independently and identically distributed random variables with

mean 8¢, = 0 and finite variance &} = w for ¢ = 1, -+, T. (A) con-
tains (a) as a special case. '
{b) The set of variables 2z; , - -- , zx contains only exogenous varia-

bles, and hence each v, is distributed independently of all z:. , with
k=1, --- K, =1,---, T.

(B) The set of variables z,, ---, zx contains predetermined (ie.,
exogenous and lagged endogenous) variables and, since the v, are
independently distributed, each v, is distributed mdependently of
¢ll concurrent or preceding values of 2z, (e, with k = 1, , K
=1, . ). (B) contains (b) as a special case.

It may be noted that if Cendition {a) is satisfied, the least-squares
estimates are also maximum-likelihcod estimates; this will be shown in
detail in Section 5.3. If Condition (A) is satisfied, the least-squares
estimates belong to a class which in Section 5.1 we will call quasi-maxi-
mum-likelihood estimates. _

An estimate p; of m: will be called “best linear unbiased” if it is un-
biased, linear in the observations ¥, {but not necessarily in the 2}, and
of minimurm variance compared with all other unbiased estimates pos-
sessing the same linearity property.

2 See especially David and Neyman [1938]. For an extension of the properties
formulated in this section, see Hurwicz [1950b] and Koopmans [1950a].
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If Conditions (a) and (b) are satisfied, the least-squares estimates
P, ', Pr are consistent, unbiased, efficient, and hence also best linear
unbiased.

If Conditions (A) and (b) are satisfied, the least-squares estimates are
consistent.”” They are also best linear unbiased estimates since the
Markoff theorem on least-squares estimates is satisfied.®

If Conditions (a) and (B) are satisfied, the least-squares estimates are
consistent and are also asymptotically efficient.”

If Conditions (A) and (B) are satisfied, the least-squares estimates are
consistent.

4.2. Properties of least-squares esiimates of the coefficients of the feduced
form. Each equation of the reduced form of our model & is of the form
of equation (4.1) because all of the variables save one are predetermined.
It follows from the propositions summarized in the preceding paragraphs
that least-squares estimates of the coefficients of a reduced-form equa-
tion will be consistent, and may be best unbiased and/or asymptotically
efficient,” depending respectively upon whether (i) the z’s are exogenous
and not merely predetermined and/or (ii) the distribution of the dis-
turbances is normal.

4.3. “Direct” least-squares estimation of the coefficients of a structural
equation does not in general yield consistent esttmates. As has been stressed
in Chapters 1 and II, and again in Section 1 of the present chapter,
knowledge of the parameters of the reduced form is not sufficient to .
permit prediction of the effects of known structural changes. For this
purpose it is necessary to have knowledge of the parameters of the
structural equations. The question might then be asked “naively”
whether least-squares estimates of the coefficients of a given structural
equation, considered individually, might possess any of the properties
we desire our estimates to have. But we are stopped already in phrasing

%7 See the discussion of properties of quasi-maximum-likelihood estimates in
Section §5.2.

% See David and Neyman [1938].

* See the discussion of properties of maximum-likelihood estimates in Section
5.2.

% See the discussion of properties of quasi-maximum-likelihood estimates in
Section 5.2.

# The term “‘efficient’” must here be taken with reference to the a priori infor-
mation actually used in the estimation (linearity of equations, predetermined
character of the z/’s, etc.). It will be explained in Section 6.5 that the least-squares
method of estimating reduced-form parameters ignores any overidentifying re-
strictions on the structural equations that might be given.
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the question, unless it happens that this structural equation is already
in reduced form. As soon as more than one intrinsically” dependent
variable y; occurs in the equation in question, the position of these vari-
ables in the equation as well as in the model is symmetrical and there
is no valid reason, in the ‘“naive’” attempt to apply least-squares estima-
tion, for selecting one rather than another as the ‘‘dependent” variable.
Since, whenever the variance of the disturbance in the equation in
question is positive, different choices of the “‘dependent” variable lead
to alternative least-squares estimates possessing different probability
limits, these estimates cannot all be consistent. There is, moreover, no
resson to believe that any one choice of the “dependent” variable would
produce consistent estimates. The more detailed analysis by Jean Bron-
fenbrenner in Chapter IX shows that this only happens by accident
{unknown to the statistician) if biases from different sources cancel
out; there are given several examples of, as well as a general expression
for, the asymptotic bias of least-squares estimates of the coefficients of
a structural equation when these estimates are based on arbitrary selec-
tion of the dependent variable. Other simple examples are given by
Haavelmo in Chapter IV and by Koopmans [1945, Table, p. 458].

In the present context we shall merely show that in the simple two-
equation system discussed in Chapter II {third example, equation (7)]
the conditions recognized in Section 4.1 as sufficient for consistency of
least-squares estimation are not met. The structural equations in this
example are '

(4.3) e + Buyer + Y121 + v = ;. (demand),
(4.49) v + By + yuzer + Y = us, (supply) (¢ =1,---,7T),
where 812 # Bz . The equations of the reduced form are

(4.5) Yie — wpyy — Ty — Tw = Vi,
(4-6) Yo — Wl — Tply — W = Vu,
where
= —B=zru Ty = Bryn o = Bravw ~ Buve
Bz — B’ Br — Bro’ B2 — B
(47) mm= 1 = — T2 = (LT
Br — B’ Bz — B2’ Br — B’
_ Bnuy — fuux _ Un — Un
vy = ———————, Yy = ———,
Bz — P Bar — Pua

3 A gimple example of consistent least-squares estimation where the dependent
character of one of the two variables y: in an equation is only apparent is contained
in Koopmans [1945, equation (14)].
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Examining equation (4.6) it is seen that y» is in general statistically
dependent upon uy , and hence equation (4.3) does not satisfy even the
weakest set of conditions sufficient for consistency of least-squares
estimates given in Section 4.1. SBimilarly, an examination of equation
{4.5) shows that y, is in general dependent on #,, and hence the cor-
responding conditions with respect to equation (4.4) are not satisfied.

4.4 Determination of identifiable coefficients of structural equations from
the coefficients of the reduced form. Qur exploration concerning the extent
to which least-squares methods of estimation are applicable to models
&1 has now proceeded to this point: least-squares methods when applied
to an equation of the reduced form will yield estimates with at least
some of the properties™ we seek but, when applied directly to the strue-
tural equations, will not (save accidentally) yield estimates with any of
these properties. In order to pursue our exploration further we now
change tacties and raise the general question: Is there any indirect way
in which least-squares methods can be utilized to yield desirable esti-
mates of the coefficients of structural equations? Specifically, is it pos-
sible to estimate the coefficients of the reduced form by least-squares
methods, and from these o derive desirable estimates of coefficients of
structural equations? Before we are able to answer this question we
shall have to examine the conditions under which a hypothetical exact
knowledge of the coefficients of reduced-form equations (and not merely
estimates of these coefficients) will yield exact knowledge of the coefli-
cients of structural equations, and it is to this question that the present
subsection is devoted,

It was pointed out in Chapter 11, at the end of Section 3, that a struc-
tural equation is identifiable if and only if knowledge of its coefficients
is implied by knowledge of the parameters of the distribution function
of the observations. But, as has been shown in Section 1.6 of the present
chapter, the parameters of the reduced form, if we again include in this
term the variances and covariances of the disturbances », of the reduced
form, constitute a complete set of parameters of this distribution func-
ticn. Hence, the conditions under which the coefficients of a structural
equation may be determined from the parameters of the reduced form
are the conditions under which this equation is identifiable. This state-
ment leads directly to the rank condition for identifiability stated at
the end of Section 5 of Chapter II, which will now be derived.*

3 The reader will notice that this application of lesast-squares methods does not
take account of any overidentifying restrictions of the coeflicients of the structural
equations. See footnote 31 and Section 6.5,

3 The equivalence of this condition (which relates to the rank of a submatrix
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The structural equations of the model ©; may be written in the form
{1.18), which we write again here:

(4.8) By, + Tz = ¢t=1,---,T).

‘We recall from Section 1.5 that . , 2., and u, are the vectors of jointly
dependent variables, of predetermined variables, and of disturbances,
respectively; that B is the ¢ by G nonsingular matrix of the coefficients
of the jointly dependent variables; and that T is the by K coefficient
matrix of the predetermined variables. Let us determine the conditions
under which one particular equation in this set is identifiable. We shall
consider the first structural equation, to be denoted :

{4.9) By, + vz = "y (¢ =1,---,T).

After such permutation of the elements of the vectors 8 and y. and
of v and z, as may be required, we can express the a priort information
concerning theexclusionof G** = G — G* dependent and K** = K — K*
predetermined variables from (4.9), specified by the model ©, consid-
ered, by the restrictions™

(4.10) B=1Bu - PBer Orosqn -+~ Owel, - Bu= -1,
(4-11) 7= [‘711 Tt MR 01,K‘+1 s le].

Corresponding to these restrictions we shall introduce the following
notation for partitioned vectors:

(412) B = [B8a Baul,

where 82 = Bu  ---  Bieol, Baa = [Orossn -+ Oiol; and

(413) ¥ =¥y Texh

where v, = [vu -+ 7k, Yoo = Ouxen -+ Oixl; and, corre-
spondingly,

(4.14) ye = a.e Yaad, 2= [ow,e 2ux

The reduced form (1.23) corresponding to (4.8) is obtained by multi-
plying (4.8) on the left by B, and may be written

(415) y: - Hz; = U't (t =1, T)i

of the matrix of reduced-form coefficients) to the condition given in Section 4 of
Chapter II (which relates to the rank of a submatrix of the matrix of structural
coefficients) iz demonstrated in Appendix A.

35 For a treatment of the identifiability problem under more general linear re-
strictions, see Koopmans, Rubin, and Leipnik {1950, Section 2, pp. 69-110],
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where
(4.16) M= —BT,

Conversely, the structural equations (4.8) are obtained from the reduced
form in (4.15) by multiplying on the left by B. In particular, the first
structural equation (4.9) is obtained from (4.15) by premultiplying by
8, the first row of B. To write this down, let I be partitioned by rows and
by columns as follows to correspond to the partitioning (4.14) of y and z:

_ i1a TIase U4, %%
{4.17) I = = [0, ] = .
ITaa Man,x IMaa,xx

Then, the statement just made is expressed by

(4.18) ) =Bl = 7,

which can be partitioned into the two conditions
(4-19) ~Ballan = T

and

(4-20) Ballssx = 0.

Conditions (4.19) and (4.20) express all that can be said about the
coefficients [ «] of the first structural equation if the parameters II,
Q@ of the reduced form are known. It turns out that only the coefficient
matrix TI of the reduced form is relevant.’® It follows that the structural
coefficients 8 , v, are identifiable if and only if (4.20) is satisfied by only
one value of 85, which is normalized by the second condition (4.10).
If this is the case, (4.19) supplies the corresponding unique value of v, .
Hence it is only necessary to study the conditions under which (4.20)
has a unique solution 3, .

Sinee we regard as given that (4.9) is an equation of a structure
which has TI as the coefficient matrix of the reduced form, (4.20) must
have at least one solution, and hence

(4.21) p(Ma4x) < G4,

that is, the rank of the matrix I, 44 cannot be greater than G* — 1.

Suppose that p(llsxx) = G* — 1. Then, since (4.20) i3 a system of
G2 — 1 linear independent homogeneous equations in G* unknowns,
the ratios of the unknowns (the elements of 34) are uniquely determined.

37

3¢ For this reason we have in the title of this subsection spoken of the coeffi-
cients rather than the parameters of the reduced form.
37 See, for example, MacDuffee [1943, Theorem 29, p. 60].
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The adoption of the normalization rule in (4.10), whereby some element
of 8a is set equal to —1, then permits the unique determination of all
other elements of 8 , subject to this normalization.

If p(Tass) < G4 — 1, an infinity of normalized solutions for 5 exists,
and hence it is impossible to determine uniquely the coefficients of the
structural equation (4.9), even though we are given full knowledge of
the parameters of the reduced form.

We conclude that a necessary and sufficient condition for the identifi-
ability of the coefficients 8 , v, in (4.9) is that

(4.22) p(Maua} = G* — L.

“This condition has been called the rank condition for identifiability of a
structural equation. It should be noted that a necessary condition for
this identifiability—called the order condilion——is implied in the rank
condition. This condition is that IIs 4+« have at least G* — 1 columns,
which means that the number of predetermined variables specified to
have zero coefficients in the equation whose identifiability is in question
"be at least G® — 1. This condition may be expressed as

(4.23) K* > @8 — 1,
where K** = K — K*, or, equivalently, as
(4.24) K¥ +G% 2 G — 1,

the form given to it in Chapter I, Section 4.

Caondition (4.24) specifies the minimum number of pieces of informa-
tion, in the form of restrictions on the coefficients, needed to give an
equation a determinate position within the set of all linear combinations
of the equations of the reduced form—just as a table needs at least three
legs to stand up. This is a relevant fact, even though the table will
still fall if its three legs are so placed that they touch the floor in three
points of a straight line. The latter type of failure cannot be excluded
by any prescription of the number of legs but only by a concern with
their position. The analogue of this concern with respect to the identifi-
cation of a structural equation is expressed by the rank condition of
identifiability.

We may illustrate the application of these identifiability conditions
in terms of the example given in equations (4.3) and (1.4). For each
equation the value of G4 is 2 and of K** is 1, and thus the order condi-
tion of identifiability (4.23) is satisfied. For equatlon (4.3) the rank
condition (4.22) is

(4.25) p[m] = 1,
e
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and for (4.4) the rank eondition is

(4.26) o ['"] =1

1t is seen from (4.7) that these conditions are satisfied whenever yu #= 0
and vy # 0, respectively.

The determination of the structural coefficients, possible in this case,™
is earried out by

(4.27) Bie= —mu/mm, yu= —{(ru+ Burn), Yo = — (7w + Buzrn);

B = -Tu/‘a‘rzl y Y = —(‘n’lz + .3221’22), Yo = —(Tm + ﬁn’l’m)-

4.5. The case of minimum requistie information and the indirect least-
squares method of estimation. We may now return to the main question
posed in the opening paragraph of Section 4.4: After obtaining a matrix
P of least-squares estimates of the coefficient matrix IT of reduced-form
equations, is It possible to determine therefrom desirable estimates of
the coefficients of the structural equation (4.9)? In this section, 4.5, we
show that this determination is normally possible when K** = G2 — 1,
that is, when the number of predetermined variables in (4.9) excluded
from the structural equation is exactly one less than the number of
dependent, variables admitted to that equation. This is the case (anal-
ogous to our three-legged table) in which at least the order condition for
identifiability of the structural equation in question is satisfied. We shall
refer to this as the case of minimum requisite information (i.e., “requi-
site’ for identifiability, and “minimum” in number of restrictions needed
to produce identifiability). Knowledge that the (necessary) rank condi-
tion (4.22) for identifiability is also satisfied usually cannot be obtained
with certainty. However, as explained in Chapter 11, Section 5, a statis-
tical test of the hypothesis of identifiability is always possible. A test
for the identifiability of a specified structural equation will be diseussed
in Section 8 below.

We shall show further, in Section 4.6, that the determination, from
the matrix P, of estimates of structural coefficients is not possible in the
same simple manner when K** > ¢ — 1. We refer to this as the case
of extra information, “extra” again referring merely to the number of
restrictions in comparison with the number generally, but not necessar-
ily, sufficient for identifiability. The terms everidentification and over-
tdentifying resirictions have also been used in relation to this case, al-

# Jt should be noted from equation (4.7), which is valid whenever the model
is that given by (4.3) and (4.4}, that . and =» cannot vanish when v, = 0,
o 7 0,
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though even ‘“overidentifying” restrictions may fail to identify when
by accident the rank condition ior identifiability 1s not met. '

It is, of course, clear from Section 4.4 that for an equation for which
K¥* < (G4 — 1 there can be no identifiability, since the necessary order
condition is not met. Hence the question of estimation does not even
arise.

In the remainder of this section, then, we consider the case of minimum
requisite information, in which

(4.28) K% = Gt — 1.

The order condition (4.23) being satisfied, there is at least this basis for
the presumption that equation (4.9) 1s identifiable. Except for aceidental
samples, it will now be found also that

(429) p(PA,**) = GA - 1,

and hence it will be possible to find a unique solution by (subject to a
suitable normalization) to the equations, analogous to {4.20),

(430) b‘:.PA'** =0,

This solution bs may be taken as an estimate of 8, . Using this estimate
ba , a corresponding estimate ex of v+ may be obtained, by analogy with
(4.19), from

(4.31) cx = —baPax .

This method of obtaining estimates of coefficients of the structural
equations from least-squares estimates of the coefficients of the reduced-
form equations is due to a suggestion by M. A. Girshick. We shall call
it the sndirect least-squares method of estimating the coefficients of the
structural equations.

In the example we have been using for illustration [equations (4.3)
and (4.4)] the estimates of the structural coefficients are

4.32) big = —pu/pe, cu= —(pu + bupa), o = —(pu + bipu);

byp = ‘—Pn/Pzi, Cop = —(Pm +- bzﬂ:’u),cm = —(Pm + bzepm).

What may be said of the properties of the estimates of the coefficients
of structural equations obtained in this way? It can be shown that all
asymptotic properties, consistency, asymptotic unbiasedness, or asymp-
totic efficiency, as the case may be, of the estimates P will also be
possessed by the estimates of the coefficients™ B, v of those structural

# The proof of this statement as it applies to consistency and asymptotic un-

biasedness may be found in Crumér [1046; see the last proposition in Chapter XX,
P 255].
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equations that areindeed identifiable. Small-sample properties will not nec-
essarily earry over exactly but, if the reduced-form estimates from a finite
sample are unbiased and/or efficient, the derived estimates of the struc-
tural coefficients will be approximately unbiased and/or efficient when-
ever the sampling standard deviations of the elements of P are sufficiently
small.

The reader will have realized that determinate estimates bs , ¢+ may
be obtained by the indirect least-squares method even if the equation
in question is in fact not identifiable. For, a failure of the rank condi-
tion (4.22) in terms of the parameter matrix I, ++ , which arises from
the values of its elements rather than from the number of its columns,
does not need to, and in general does not, entail a failure of the cor-
responding condition (4.29) in terms of the estimate Ps s« . In a suffi-
ciently large sample such a situation is likely {0 be detected through the
test of identifiability discussed in Section 8. If this test is not applied,
it still has a good chance to be revealed through high estimated sampling
variances of bs , ¢, , the evaluation of which is discussed in Section 7.

4.6. The case of extra information. 1f for the structural equation (4.9)
(4.33) EK** > G5 — 1,

again the order condition for identifiability (4.24) is satisfied and there
is at least this basis for the presumption that (4.9) is identifiable. How-
ever, in this case, except for accidental samples, it will be found that
p(Pasx) > G* — 1, and hence, since Ps 4 has G rows,

(4.34) P(PA,“) = (.

Thus, no nonvanishing solution of (4.30) exists, and hence it is not pos-
sible to derive estimates of 81 and v from least-squares estimates of
the coefficients of the reduced form in this simple way.

Two courses of action are open in this situation. One might arbitrarily
choose G* — 1 of the columns of Pj sy to form a submatrix with rank
. G* — 1 and derive consistent estimates of the structural coefficients of
identifiable equations on the basis of the leasi-squares estimates in this
submatrix. This procedure is somewhat unsatisfactory since it neglects
a priori information concerning the structural equation to be estimated
and since the choice of what information to neglect is arbitrary. Another
possible approach is to develop methods of estimation of the parameters
of the reduced-form equations that ensure that the rank of the estimate
of Hax Will be exactly G2 — 1 even where K** > G2 — 1. Such a
method has been developed by Anderson and Rubin.* This method will

# Anderson and Rubin .[1949, 1950]. See also Anderson [1950].



142 T. €. KOOPMANS AND WM. €. HOOD [cHAP. VI

be discussed in Section 6, where we shall adopt a somewhat different
avenue of attack from that employed by Anderson and Rubin.

47. Haavelmo’s examples in Chaplter IV and the occurrence of idendilies.
1t may be remarked that all of the examples given by Haavelmo i in
Chapter IV fall in the category of minimum requisite information®
since, as may be easily checked, in each of his equations the number of
predetermined variables excluded is exactly equal to the number of
dependent variables not excluded less one. It is for this reason that
Haavelmo is able to accomplish the estimation of the coefficients of
his structural equations by the indirect application of least-squares
methods which we have outlined in this section.

It should be pointed out, however, that Haavelmo's procedure differs
slightly from that outlined above in that among the structural equations
of each of his three models there is an identity—that is, a structural
equation with given coefficients and no disturbance. There are two equiv-
alent ways to apply the indirect least-squares methods to the estimation
of the coefficients of structural equations in a structure S» that includes
an identity. One way is to use the identity to eliminate one of its com-
ponent variables and thus to remove the identity from the set of struc-
tural equations. This gives rise to a revised structure Sy consisting of
one less equation than the original structure 8. . Provided that all of
the equaticns of the original structure are identifiable,” their coefficients
may be derived from the coefficients of those reduced-form equations
associated with the revised structure Sy . If all the equations of the struc-
ture Sy are provided with the minimum requisite information, estimales
of the voefficients of the original structure Sy may be derived from least-
squares estimates of the coefficients of the equations of the reduced form
associated with the revised structure ST, with the help of the given
identity. This is Haavelmo’s procedure.

The equivalent alternative is to proceed, without eliminating a vari-
able and thus without removing the identity, to derive the estimates of
the coefficients of Sr from the estimates of the coefficients of the reduced
form associated with Sr. One of the equations in this estimated re-
duced form will be derivable from the other with the help of the identity.*
There are certain disadvantages in this alternative procedure, one of
the more significant of which is that one more regression equation must

1t Haavelmo points this out in his footnote 10.

92 The conditions for identifiability are usually most easily studied in terms of
the original structure Sr .

53 If this is overlooked, and if the observations satisfy the identity, accurately
computed least-squares estimates of all equations of this reduced form will also
obey the identity, and hence the same estimates are obtained.
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be computed than is necessary under the first alternative. An offsetting
advantage may be that the restrictions on the structural coefficients
specified by the model are likely to be simpler if identities are not re-
moved in this way.

4.8. The application of least-squares methods lo lhe esttmation of the
malrix of covariances of disturbances in the structural equations. In Section
4 we have restricted the discussion to the application of least-squares

" methods to indirect estimation of the coefficients of structural equations
‘and have not considered the estimation of the covariance matrix = of
the disturbances. This gap will be filled in Sections 5 and 6, which are
devoted to maximum-likelihood estimation of all structura) parameters,
where we shall also show that indirect least-squares estimation is equiva-
lent to maximum-likelihood estimation in the ease of equations provided
with the minimum underpinning of a priori restrictions requisite for iden-
tifiability.

5. Tar MaxiMum-LixeELiIHooD METHOD OF ESTIMATION

5.0. Introduction. In the previous section we showed that least-squares
methods of estimation may be used indirectly to obtain estimates of the
coefficients of a structural equation provided that the number of a
priort restrictions on the coeflicients of that equation is the minimum
requisite for identifiability. These estimates have desirable properties
whenever the equation in question is in fact identifiable. In the event
that the statistician wants to utilize a number of restrictions more
than adequate for identifiability, this indirect least-squares method is
not applicable. The maximum-likelihood method, to be introduced in
this section, will yield estimates with similar desirable properties in this
case in which the indirect least-squares method fails, and is equivalent
to the latter method when only the minimum requisite number of re-
strictions is given.

The indirect least-squares method, when used to estimate the coeffi-
cients of any particular structural equation in a linear model, utilizes
only the a priori information on restrictions which apply to that equa-
tion. Maximum-likelihood methods are more flexible in this respect in
that they can be adapted either to utilize merely the a priori restric-
tions relating to the coefficients of the equation being estimated or to
utilize information relating to other structural equations as well. Whereas
the indirect least-squares method estimates separately each equation
for which it can be used, the maximum-likelihood method ean be used to
estimate the parameters of all equations simultaneously, or the param-
eters of the equations of a subset simultaneously, or those of a single
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equation, provided of eourse that the equations in question are iden-
tifiable.

1t was argued in Section 4 that under certain specifications indirect
least-squares estimates of structural coeflicients are asvmptotically
efficient. Of course, they only possess this property relative to that
class of estimates which utilizes the same a priori information. Whenever
maximum-fikeiihood methods are used to estimate structural parame-
ters, and whenever they utilize more relevant a prion information than
indirect least-squares estimates of the same parameters, they have a
higher asymptotic efficiency than the indirect least-squares estimates.

The maximum-likelihood method Is the most fully worked out esti-
mation precedure for [inear models, as here considered, which will
give at least consistent estimates of identifiable structural parameters
(and asymptotically efficient estimates if the disturbances are indeed
normatl), which will yield estimnates where indirect least-squares methods
wiil not, and which is flexible in terms of the amount of a priori informa-
tion that it presupposes or utilizes.

Iu the present section we shall define the meaning of maximum-
likelihood and guasi-maximum-likelihood estimates and summarize the
results of recent work coneerning their properties. We shall then, by
way of introduction, apply the maximum-likelihood method to the esti-
mation of the coefficients in a single-equation model and to the estima-
tion of the parameters of the reduced form in the model &, . We shall
show that in both of these cases maximum-likelihood estimates are
identical with least-squares estimates. Next we shall explain the mean-
ing of stepwise maximization of a function and make our first applica-
tion of this useful device to the estimation of the *“‘constant terms”
veo I the structural equations fi.e., the terms which in (1.14) we treated
as coeflicients of the dummy variable “17]. Finally we shail introduce
the likelihood function, expressed in terms of the parameters A and 2,
that is associated with our general model &, and show how, by stepwise
maximization, a concentrated likelihood function expressed in terms
of A alone may be derived from it. From the latter function the maxi-
mum-likelihood estimate A4 of A may be obtained, in terms of which
the maximum-likelihood estimate S of £ can be expressed. Since all of
the a priori information incorporated in the model & is used in ob-
taining the estimates A and 8, this application of the maximum-likeli-
hood method is referred to as the full-information maximumd-likelihood
method.

5.1. The definttion of maximuwm-likelthood and quasi-mazimum-likeli-
hood estimales. It was shown in Section 1 that, in any structure Sy of
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the model €, sampling variation in the disturbances u;, - -+, 4 in-
duces sampling variation in the jointly dependent variables y, , - - - ,
Yyr, the values 2,0, -+, Zr of (lagged and unlagged) exogenous vari-
ablesand the values y,_,0 , - - -, 3 of the “endogenous” variables anterior
to the period of observation being regarded as fixed in repeated samples
and therefore hereafter all to be referred to as exogenous. In order to
simplify the exposition of the maximum-likelihood method of estima-
tion, we now assume that the normal joint density function

(5.1) Qur, -+, ux)

of the disturbances w,, - - -, ur is nonsingular® (i.e., possesses a lon-
singular eovariance matrix =). From this distribution of the disturbances
and the structural equations

(5.2) Az, = By} + T2i = u, t=1,---,1),

in short from the structure Sy, the joint distribution function of the
endogenous variables y, (¢ = 1, --- , T) may be derived. Let us denote
the resulting joint conditional distribution® of the components of the
veetor ¥ = [yn -+ yr} as follows:

(5.3) Fe(ylz; A, 2),

where y, Z are the vectors summarizing the observations on endogenous
and exogenous variables, respectively, introduced in (1.22). For con-
venience we usually work with the logarithm of (5.3) multiplied by
1/T. We regard this new funetion as a funection having the parameters.
A and Z as arguments, after the actual observations £ have been in-
serted:

(5.4) (1/T) log Fe(y | 2; A, 2) = L(A, Z; 2).

Here we have used one vector symbol, z, for the observations of all
variables because the distinction between endogenous and exogenous
variables, essential for the definition of the function F; , is superseded
by the distinction between dependent and predetermined variables when
it comes to the derivation and computation of maximum-likelihood
estimates.*’

The function (5.4) will be called the logarithmic likelihood function
associated with the sample x. The method of maximum likelihoed con-

1 This implies that any identities that may have been present in the model
originally have been removed by the elimination of an equal number of variables.

* The explicit derivation of thizs funection is given in Section 5.4 and Appendix
C. The result is given in (5.51).

¢ The reader is referred again to footnote 19,
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sists in maximizing L(A, Z; x) with respect to A and Z and taking the
maximizing values A and S as mazimum-likelihood estimates of the
true values'” of A and 2, respectively. These estimates are, of course,
functions of the observations x and are the same as those that would
be obtained by maximizing Fr with respect to A, Z.

Ii the distribution function @:(u.) of the disturbances u. is not re-
quired to be normal, or even the same for different values of ¢, it is of
course still possible to form the same function {5.4) and obtain estimates
of the matrices A and Z by maximizing that function, even though this
function is no longer a likelihood function. Estimates obtained in this
way will therefore in this case be called quasi-marimum-likelihood esti-
mates. These estimates are the same functions of the observations as
the maximum-likelihood estimates for the case in which @,(u,) is normal
and constant, but their sampling properties are different whenever the
distribution @,(u,) is not some constant normal distribution. These sam-
pling properties will be discussed for more general models in Chapter VII.

5.2. Properties of maximum-likelihood and quasi-maximum-likelihood
estimates. The method of maximum likelihood yields estimates that
possess some or all of the properties enumerated in Section 3, depending
on the specifications of the model. A general discussion of the properties
of maximum-likelihood estimates, in the classical case in which succes-
sive observations are drawn from independent identical distributions,
can be found in several textbooks.” Much recent work has been devoted
to establishing the properties of maximum-likelihood estimates of
parameters of linear structures such as (1.6), which involve successively
interdependent observations. A number of results have been obtained
regarding the consistency of genuine and quasi-maximum-likelihood
estimates. Mann and Wald [1943] have proved the consistency of such
estimates in linear models in which the equation system is stable,”
there are no exogenous variables (save a “constant term” in each equa-
tion), all parameters are identifiable, and all moments of the distribution

47 The reader should be warned that the symbols for parameters such as A, =
are used with two different meanings. In some contexts these symbols denote the
“true” values, that is, the values of these parameters in the “‘true” structure,
which by hypothesis has generated the observations. In other contexts these
symbols denote the arguments of the likelihood function and as such are regarded
ag freely variable. We have refrained from complicating our notation by a distinc-
tion that will be clear to the reader from the context.

# Cramér (1946, Chapter XX X111}, Wilks [1943, Section 624, pp. 136-142], Wald
[1849], Wolfowitz {1949).

¥ For a definition of this coneept, see Koopmans, Rubin, and Leipnik [1950,
Seection 3.3.1].
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function of the disturbances exist and are finite. Koopmans and Rubin®
extended these results to cover cases in which exogenous variables are
present, some but not necessarily all structural parameters are identi-
fiable, and the distribution function of the disturbances is slightly less
restricted. Rubin {1950] proved consistency in a special ease in which
the stability assumption is not met, Further results on consistency of
gquasi-maximum-likelihood estimates are presented by Chernoff and
Rubin in Chapter VII of this volume. Some results have also been ob-
tained on the asymptotic efficiency of genuine maximum-likelihood
estimates. Wald {1948)] has proved this property for a certain class of
cases in which observations are serially dependent, and in which the
distribution funection of the observations contains ane parameter only.
Rubin [1948] has proved the asymptotic efficiency of maximum-likeli-
hood estimates for a class of models containing stable linear stochastie
difference equations involving several parameters and exogenous and
endogenous variables.

5.3. Maximum-likelihood estimates of the coeffictents in a single-equalion
maodel are least-squares estimates. We shall begin our study of maximum-
likelihood estimation by considering two cazes in which maximum-
likelihood estimates are also least-squares estimates. The first case is
that of a single-equation model; the second, treated in Section 5.4, is
that of the reduced form of our general linear model &y . The operation
of the maximume-likelihood method is thus first illustrated by its applica-
tion to cases already familiar to most readers.

Let us consider, then, the model containing the single equation (4.1),
which we rewrite as

(5.5) Ye — w2y = v,

where » = [m; --- mg] and where y. and v, are scalar variables, z, is
a vector, and the coefficient, of ¥, is given the value 1 for normalization
purposes. This model may be regarded as a special case of our general
model &r in which there is only one equation, which is therefore already
in reduced form. Accordingly, we now adopt specifications {(a) and (B)
of Section 4.1. That is, v, has a normal distribution with mean 0 and
variance w. We write”

(5.6) Qo) = r-w teH=

for the corresponding probability density function, where & is & numeri-
cal constant whose value is of no interest here. Suceessive values of #,

5 In Koopinans, Rubin, and Leipnik [1950, Section 3].
81 The symbol ¢ denotes the base of the system of natural logarithms.
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are independently distributed. Furthermore, among the elements of 2,
we may have lagged values y.y, yi2, - - - of the endogenous variable
Y¢, the remaining elements of z; being exogenous. However, as argued
more fully above in connection with (1.19), the distribution of », is
independent of all elements of z, , a fact on which the following derivation
hinges. '

As stated already, the distribution of », induces through (5.5) a dis-
tribution of the y, conditional upon the values of the z,. Because v, is
itself independent of 2, , this conditional distribution of y, is again normal,
with the same variance w, but shifted to a new mean,

(5.7) &y, | 2:) = w2l + 8(ve | 2) = wak.

We observe that thie expeetation depends on ¢ since z; is not, in general,
constant through time. The probability density function associated
with the conditional distribution of y, given 2z, is, by the foregoing
TeAsoNIng,

(5.8) Fy: 1 z) = ,{l.w*é.e*(l.'zw)(m—n;)z.
Because of the possible presence of ¥y, Y2, -- - among the ele-
ments of z,, successive values y; ({ = 1, ---, T) of the dependent

variable, unlike those of v;, need not be independently distributed. For
the realized value ¥, , drawn from the distribution (5.8) for¢ = &4 —1,
may enter as a conditioning value among the elements of z,, in the
distribution (5.8) for t = & . However, the joint distribution function
ofally, (!t =1, ---, T) can be obtained by repeated application of the
rule for compounding conditional distributions.® With reference to the
definition (1.22) of the symbols y and 2 (in which each y, is now to be
thought of as scalar), relation (5.8) leads to the following joint condi-
tional probability density of the values y, (! = 1, ---, T) of the de-
pendent variable, for given values 2, ({ = 1, ---, T) of the exogenous
variables:”

T i ] T
(59) Folylz) = ,H,f(y:lzf) = kew Troxp — 2 2 (y. — w21,

ba=]1

where xp = «; .
In this funetion the observations enter only through their seeond-

82 If f(we | w1, wo) is the conditional probability density function of w, for
given w, and wo (where the w; may be either vectors or scalars), and if f{w: | wo)
is the conditional density function of w, for given u, , then the joint conditional
density function of wy and w. for given wq is f(wy , 1we | wo) = flws | wo)-faws [ w1,
wo}. This is a direct consequence of the definition of a conditional distribution
function (for which see, e.g., Mood [1950, Section 4.6]).

3 The notation exp = for the exponential function is an alternative to e=.
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order moments about the origin. The (symmetric) matrix of these mo-
ments is defined as follows:

L]
Myy 1 My, T My
m om I Myy My
(5.10) M= 21y E 212, Mz 2 l = I: ,
R My Mg
1
)
[mzﬁv b Mgyt 'm‘ZKtxJ
54 ’
where™ m,, = m,, and
I~ 1<
mwz?zyt: "%z.-=—zy:2='u
=1 =1

(5.11) L
mz;z,’ = 71'—', Z Zit zj!-

t=1
Using equations (5.10) and (5.11), it is easily verified that
1 T
T_ fx=]l

and hence (5.9} may be written

(5.12) {y; - TZ,:].Z = [1 _W]M[I _W]’:

G.13)  Fo(y]?) = oo eexp — % 0 —rM[I —al.

This function, regarded as a function of the parameters =, w, is the
likelihood function associated with the sample of observations y and z
[represented in (5.13) only by M]. As noted already, it is usually more
convenient to work with the logarithm of this function divided by 7,
which we now write in the two alternative forms

i,—l,log Felylz; =, w} = Lz, w; x)
(5.14) =m—y%w—ili{m—smwm*
20 T3
=gy —glogew — — 11 —=lM[1 —=,

where «; = 1/T log «» . Clearly the logarithmic likelihood function
(5.14) will achieve a maximum for the same values of = and o as (5.13).
The values p = [py -+ prlofr = [m -+ =7z at which (5.14)

8 The moment matrix M., is specified to be nonsingular for the reasons outlined
in Section 1, footnote 13.
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achieves a maximum for any given « will be the values at which the
quadratic form®

72 b — sl 2)) = 7 2w — well?
(5.15) S
= (1 "—r][ z] 1 —=)
My M.,

achieves 2 minimum. Sinee w does not occur in (5.15), the minimizing
values p are independent of w, and the same values must be obtained
if (5.14) is maximized simultaneously with respect to = and w. We now
recall that the least-squares estimates p of = are defined to be those
values p of = for which 21y {y: — 72}’ is a minimum. Thus it may
be inferred that for the model under discussion the maximum-likelihood
estimates p of = are also the least-squares estimates. Consequently, the
properties of these estimates may be determined from the theorems
summarized in Section 4.1. The large-sample properties (consistency
and asymptotic efficiency) there claimed for least-squares estimates if-
Conditions (a) and (b) are satisfied can indeed be seen as consequences
of the fact that the least-squares estimates are, under those conditions,
also maximum-likelihood estimates.

From least-squares theory®™ it is known that, by differentiating the
quadratic form (5.15) partially with respect to the elements of = and
setting these partial derivatives equal to zero, a set of so-called normal
equations is obtained which may be solved simultaneously to give the
least-squares estimates p of x. These normal equations may be written
explicitly as follows:

YL + -+ PrMzyey = Meyy,
(5.16) e
lezle + s + PrMegey = Mgy,
or, in matrix form,
Mz * " Mg ¥4 Meyy
GBI 1 ... ... .. or M,p' = M.
Megzy ** " Megzg K Mgy
The solution of these equations is thus p’ = M:'m,, or, since M, is
symmetric,
(5.18) p = m.Mz .

58 Since (5.15) is a sum of squares, it is a positive definite quadratic form (see
Appendix B) and hence possesses one and only one minimum, which is the abso-
lute minimum.

5¢ For a systematic treatment of normal regression theory the reader is re-
ferred to Wilks [1943, Chapter VII].
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By inserting this maximizing value p for = in the likelihood function
(5.14) and then equating to zero the partial derivative with respect to
w of the function so cbtained, one easily obtains as the maximum-likeli-
hood estimate’” w of w,

1< e
(5.19) w= g ; (ye — pzo)
1 —plMI —p) = myy — MM sy,

This is also the estimate used in connection with the least-squares
method of estimation.”

i

- 54, Mazvmum-likelihood estimates of the parameters of reduced-form
equations are also least-squares estimates. We shall now consider the
estimation of the parameters of the reduced-form equations (1.23)
associated with a structure Sr of the general linear model &; . We begin
with the derivation of the likelihood function in terms of the parameters
11, @ of the reduced form. The form of this function will allow us to
draw the conclusion we seek, and will also be a useful point of departure
for the derivation in Section 5.7 and Appendix C of the likelihood
function in terms of structural parameters A, Z.

We start from eguations {1.23) of the reduced form, which we write
here in an alternative form that will help in the understanding of the
later formulae such as (5.33):

(5.20) y;— Mz, = [I —Hz,=v:. (t=1,---,7T).

Here [ is the identity matrix of order G, ¥, and v, are now vectors of &
elements, and x, is the vector defined by (1.20). Under the specifications
of &y, the successive disturbance vectors 1y, - -+ , vy are independently
and identically normally distributed with zero means and finite co-
variance matrix  as defined by (1.25).

The probability density function of this multivariate normal distribu-
tion is known to be™®

57 Inspection of the second derivative shows that this procedure yields the one
and only maximum, which is the absolute maximum.

8 Since we are here coneerned primarily with large-sample properties of esti-
mates, we disregard throughout this chapter, in estimating variances and covari-
ances of disturbances, any allowances for degrees of freedom lost in the estimation
of other parameters. While, if Conditions (A) and (b) of Section 4.1 are satisfied,
(/T - K)w is an unbiased estimate of w, we do not yet know how to make a similar
bias-removing correction either in single-equation models if Condition (B) re-
places (b) or even in multiequation models under Conditions (A} and (b) when
over-identifying restrictions are to be taken into account.

¥ See Mood [1950, Section 9.4].

¥ We use exp w ag synonymous with e
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G
(5.21) xe-det™ Q-exp—3 Zl viw vy, = ke-det™ Q-exp—2o, 071 v',,
apnd .
where «, is & numerical factor, det™ @ is the reciprocal of the square root
of the determinant associated with the square and nonsingular matrix
2, and «'’ are the elements of the matrix @ inverse to .

For every ¢, the distribution of the elements of », induces, by the first
member of (5.21), a distribution of the elements of y, conditional upon
the values assumed by the elements of z,. As before, in the case of a
one-equation model, we must now use the fact stated in (1.19) or (1.26)
that the disturbances «, or v, (whichever are in question) are distributed
independently of the predetermined variables z,. For this reason, the
conditional distribution of the vector variable y, for given z, depends on
2, only in its means, while its covariance matrix is the same (Q) as that
of v, . Thus, in going from v, to y, for given z,, the distribution is merely
shifted to a position with (eonditional) means, which, to be quite ex-
plicit, we write also in indicial form,

8(9“ | z:) = w1Z1, + 0 Wlxzml

or 8(ye ] z:) = 1z, .
E(ym ! Zt) = Ta2i + " + ToxrZr:

(5.22)
Hence, for any given ¢, the conditional joint density function of the ele-
ments of y, is

(5.23) xdet™ @ cexp — My — M2)'Q 'y — Im2Y).

As before, since the elements of y,_,, ¥.—», - -+ may be found among
the elements of the vector z,, held constant in (5.23), the (observed)
endogenous variables ¥, may be serially interdependent, even though
the (latent) disturbances u, or v, are specified to be serially independent.
However, the conditional distribution (density) function Fr(y|Zz) of
the vector variable ¥ (comprising all values of endogenous variables
pertaining to the period t = 1, --- , T) for a given value of the vector
variable Z (comprising values of exogenous variables only) can again
be obtained by compounding conditional distributions. With reference
to the definitions in (1.22) of y and Z, we obtain, analogousiy to (5.9),

T
(520)  Fily | 2) = redet™ @eenp—} 3 (0 ~ 2007 — T2,

where x; = x4 and where a transposition has been carried out under the
summation sign. A further rearrangement, foreshadowed by (5.20),
puts the argument of the exponential function in (5.24) in the form

T

(5.25) 13 I —Oyely -,

el
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The evaluation of the sum is most conveniently® carried out by array-
ing the (row) vectors z, (t = 1, ---, T) into a matrix

R
(5.26) X=y %=1 ¥ & i=[¥ Z.
B
We also use the concept of the trace®™ of a squdre matrix R, denoted
tr £ and defined as the sum of its diagonal elements:

(5.27) tr R =2 rs.

It is easily seen from this definition and from the multiplication rule of
matrices that, if @ has m rows and »n columns, and E has n rows and m
columns,

{5.28) tr QR = tr RQ.
With the help of these notational devices, (5.25) can be written as
—Ltr(X1I —1ye'I —-Ijx’)

(5.29) .
= e (I —Oye’l —mX'X).

If we now examine the matrix product X'X appearing in (5.29), we find
its typical element to be

T
{5.30) Z Zi Ty = Tmz-;zi )

(223

i.e., T times the typical element of the {(symmetric) moment matrix

R [Mw M,,,:l
sz Mzz
—mth m‘ﬂwa 1"'”1'1 mﬂx*.l[_
Ga S L
Mzyyy Maywg § Mayny LLTEY
£V Magyg | Magsy oo —_—

81 The reader unfamiliar with the shorthand of matrix neotation may wish to
convince himself of its usefulness by writing out the indicial equivalents of the
following derivation.

2 Bee, for example, Birkhoff and MacLane [1941, p. 309, exercise 12].
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of all dependent and predetermined variables, defined by an obvious
generalization of (5.10) to the case where y is a vector. Inserting the
resulting expression in (5.24) we obtain

(5.32) Faly|2) = x.;-det—”sz-exp{—%tr U —uye’'y  —mal.

This expression, when regarded as a funetion of the parameters IT and
2, represents the likelihood function associated with the sample of
observations y and 2. On taking the logarithm of each side of (5.32) and
multiplying by 1/7, we have for the corresponding logarithmic likeli-
hood function, if & = (1/7) log &5,

1
L II, 9 = - l FT Z
533) (I, @) 7 log w2

=« —3logdet Q@ —3tr (I -TIQ~'[7 —HM).

While our task is to find the values of II and © that maximize this
function, we first consider, as before in the maximization of (5.14), the
problem of maximizing (5.33) with respect toII for a given value of Q.
This is the problem of finding the value P of O that minimizes the
quadratic form (which we write in two ways as a reminder of its origin),

tr (I -Oye™'{I —ma
(5.34)

[

X B £
E (yn - Z_; ‘r.'kzm) o (yﬂ — ; o jk zkz) .

T
t=1 4, el

This time, the matrix  does oceur in the function to be maximized
with respect to II. Nevertheless, the maximizing value P is even here
independent of the value given to ©. For an explicit proof of this state-
ment, carried out by equating to ‘zero the derivatives of (5.29) with
respect to the elements of 11, we refer to Koopmans, Rubin, and Leipnik,
{1950, Section 3.1.8]. Here we give only the following heuristic argument.

The form of the function (5.29) is the same whether all of the variables
2, are exogenous or whether some of them are lagged endogenous. Hence
the maximizing value P must be the same function of the observations
Yi, 2. (t = 1,---, T) in these two cases. But in the case in which all
z, are exogenous, the model, which does not place any restrictions® on the
elements of Q, allows us to look upon the estimation of the coefficients
xa (k = 1, ---, K} of the 7th equation of the reduced form, say, as a
separate one-equation problem, such as was studied in Section 5.3,

# Except that, as a covariance matrix of a nonsingular normal distribution,
2 must be positive definite (See Appendix B).
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involving only the unknowns w4 (k = 1, .-+, K} and the variance
@ of the marginal distribution of the disturbance v, in that equation.

It follows from this reasoning, and is also proved explicitly in the
article referred fo, that the maximum-likelihood estimates pu of the
elements 7 of I in (5.29) are the least-squares estimates, found by
solving a set of “normal equations” (5.17) for each equation of the
reduced form. These sets of normal equations can be written simul-
taneously in the form

Mazyzy M2 n Par Mayn Mg
1GX1:Y S T | R S ,
mzxsl e Megzg pl}l’ ttt Pax m:xyl e mgx,,a
or
(5.36) M. P =M,,.
The solution is given by P’ = M:M,,, or, since M w=M,, by
(5.37) P = M,M7.

By substituting this expression for II in (5.33) and then maximizing
with respect to €, the maximum-likelihood estimate W of @ is found
to be

K
Yo — 2 Pk

T k=1
2z
du=1

W e

3=

X
(5’38) Yo — kX; PGk Rkt

x X
[?}1: - ?:; Preiee 1 Her T Z PGkac]

k=1
= (I =PIM[I —P! = My, — MM M,,.

The first expression for W shows that this estimate of 2 is formed by
an obvious generalization of the corresponding “least-squares” estimate
{5.19) in the case of a single equation. The elements of W are the sample
covariances of the residuals™ in the estimated equations of the reduced
form. The estimate W will play an important role in Section 6.

s« Throughout we use the term *‘residual” in & meaning different from the ‘“dis-
turbances” u or v. The residuals are quantities that take the place of u or v in the
structural or reduced-form equation, (1.18) or (1.23), if the parameters B, T, or
11 are replaced by their estimates. Thus, the residuals can be regarded as estimates
of the disturbances.
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5.5. Stepwise maximization of a funciion. We have encountered two
cases in which it was convenient, in maximizing a function of two sets
of parameters (w and 7 in one case, O and 1 in the other), to assign
temporarily fixed values to the parameters of one set (w or ) in order
to carry out a provisional maximization with respect to those of the
other set (r or II}. In both cases our reasoning was simplified by the
fact that the maximizing values so found for the second set did not
depend on the values assigned to the parameters of the first set. How-
ever, the usefulness of the “stepwise” maximization with respect to
subsets of the set of parameters does not depend on such happy acci-
dents. Furthermore, stepwise maximization is not merely a convenience,
mathematically, in the maximization of complicated likelihood func-
tions. Even more important is the fact that it adds a considerable degree
of flexibility to the maximum-likelihood method of estimation by per-
mitting one to concentrate attention and computational resources on
parameters of special interest or on individual (sets of) identifiable equa-
tions. We shall therefore study this device in the present subsection and
then use it repeatedly in the rest of Section 5 and throughout Section 6.

Consider a likelihood funetion

(5.39) f(n, 8; 2)

to be maximized with respect to the parameters » and 6, each of which
may be regarded as a vector. Let us assume that this function has one
unique maximum® with respect to n and 8 for every value of z. The
fogic of stepwise maximization is as follows. Let the function f(y, &; z)
be maximized first with respeet to ». This means that, for each ¢, and
for the given value of x, that value

(5.40) fi=4(6;x)

of 7 is selected which maximizes f(y, 8; r} regarded as a function of y

alone. Considering » and 8 for a moment as sealars, this is illustrated

graphically in Figure 1, where the shape of the function f(n, @; 1) is

indicated in the two-dimensional (7, 8)-space by contour lines. For any

8, say 6°, the maximizing value #° of 5 is given by the n-coordinate of

the point at which the perpendicular at §° is tangent to a contour line.
¥ (5.40) is substituted in (5.39), we obtain a function

(5.41) fia(e; x), 8; v} = ¢(8; x)

% In the event that a likelihood function has more than one local maximum,
the maximum-likelihood estimate is defined as that value of the argument for
which the highest maximum is attained. The argument of Section 5.5 then still
applies within a region of the (3, 8)-space containing only the highest maximum.
Computational problems arising from the existence of more than one local maxi-
mum are commented on by Koopmans, Rubin, and Leiprik [1950, Section 4.5.6].
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of 8 and z only, which we shall call a concentrated likelihood function
because it is concentrated on the set of parameters 8. This function is
illustrated for a sealar @ in Figure 2. Its definition implies the property

(5.42) g(6; 2) > f(n, 6; ) for all 4, 8, z.

Now if ac the second step ¢(#; x) is maximized with respect to 8, we
obtain a value 6(z) of # such that

(5.43) glé(x); 2} » g0, x) for all 6, .

3 - g6 x)

7 (8 %)
7 {x)

f(n & x) = const.

@ f——— ———

tx)
- Ficune 1 Figure 2

Comparison of (5.42) and (5.43) shows that, if we define

(5.44) #(x) = #{6(x), =},
we have
(5.45) fi4(x), b(x); z} = g{b(x), 2} > f(n, 6;2) foralln, 4,z

Hence, the maximizing values #(r) and #(z) obtained by stepwise maxi-
mizations are the same as those that would be obtained by maximizing
{5.39) simultaneously with respect to 1 and 6.

Tn problems with which we are concerned we can sometimes choose
8 in such a way that we are not interested in 4(z). In this case the vari-
able 5 is effectively eliminated® from the function to be maximized by
the substitution of #(8; z) in f(», 6; z). In some such cases, if 6(z) is
all that is required, this procedure may be simplified even further by
substituting for y in f a function, say n = »(£), of a variable ¢ such that
the domain of £ maps into that of 5, and then proceeding as above.

6 The use of the term “‘elimination,” natural in itself, is further supported by
the fact that, in the case of differentinble likelihood functions as here considered,
the procedure in question is equivalent to an elimination, in the usual sense of that
term, of the maximizing value 4 of » from the first-order conditions for a maximum
of f(n, #; =) in terms of both 4 and &.
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This device is particularly useful in the more general case in which ¢
and @ are interpreted as vectors.

It may finally be remarked that stepwise maximization also simplifies
the formulae and computations for the sampling variances and co-
variances of estimates of those parameters on which interest is concen-
trated. These formulae are given in Section 7. .

5.6. The estimation of constant lerms in the equations and the definition
of moments. Our model &, makes provision for a constant term in each
structural equation by the insertion of a dummy variable “1” in (1.6)
and a corresponding column vy in (1.14). If the coefficients v, are elimi-
nated from the likelihood function by a stepwise maximization, we ob-
tain a concentrated likelihood function of the same general form as the
original likelihood function, but without the dummy variable “1,” pro-
vided that we redefine the moments of the observations appropriately.
We shall indicate the manner of doing this for a single-equation model,
though the principle is quite general.

Consider the model consisting of the single equation, with an explicit
dummy variable “1,”

{5.46) Ye — M2y — - — WxZxs — Wo = Vg.
The logarithmic bkelihood function may be written
T

(647) L7, 0) = s — b logw — o = 2 (g — 7l 1)}

2« T3
where # = [m -+ =g o). On setting equal to zero the partial de-
rivative of (5.47) with respect only to ,; , we obtain as the maximizing®’
value #(r) of m

l T

(5.48) tolm) = = 2 (g — w2,

=l

where, as in Section 53, r = [n, --- wxl].
We now define the new moments of the observations, to be referred
to as moments about the mean, as follows:

1+ 1+
mgy = m Z (yt - y0)2: where yo = m E Yes
Ti= T
(5.49)

T

1 T
me.s; = 7 ; (e — 2)(e;e ~ 23), where 2% =

i
TS
(3:.7 = 1’ T :K)
1 &
mzz" = T Z (ye — y") (22 — Z‘D,
=1

#7 That a maximum is indeed reached for x, = #o(x) follows from the negative-
definite character of the quadratic form in (5.47); see Appendix B.

Zit
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and let M° be the matrix of these moments, formed analogously to
{5.10). Then, on substitution from (5.48) into (5.47), we obtain, using
(5.49),

(5.50) L™, w) = ks — 3 log w - (1/20)[1 —aM 1 -],

which may be compared with equation (5.14). After estimates p of
x are obtained from the maximization of {5.50) they may be substituted
for = in equation (5.48) to obtain the estimate po of .

This proecedure for the estimation of constant terms is applicable in
all cases considered below whether we are dealing with equations of the
reduced form or with structural equations. For computational purposes
(see Chapter X) it is as a rule economical to perform the estimation of
constant terms first, and then to estimate the other parameters from
moments about the mean.” For the purposes of the present chapter
we can allow all subsequent formulae and results to be interpreted in
either of two ways. In the first interpretation a dummy variable “1”
is present among the elements of Z,, and M stands for the matrix of
“raw’” moments; in the second, no dummy variable is present, and M
stands for M".

5.7. The likelihood function L{A, Z) assoctated with the general linear
model ©; . In Bection 5.4 we derived the joint distribution funetion
Fz(y | 2) of those values of the endogenous variables pertaining to the
period of observation (comprised in the vector ¥} conditional upon the
values of the exogenous variables (comprised in z). This distribution is
zxpressed in (5.32) in terms of the parameters 11, @ of the reduced form.
However, by (1.24) and (1.25), these parameters are functions of the
structural parameters A, Z. Therefore, all that is necessary to obtain
the distribution Fy(y | Z) in terms of structural parameters is to substi-
tute the functions indicated by (1.24) and (1.25) for I and Q in (5.32)
and make some simplifications in the result. This task is carried out in
Appendix C.

The resulting expression is®

(5.51) Fr(y |2 = xs- | det™B| -det ¥ Z-exp | — 3T tr (Z'AM A"}
For a given sample (y, £), and regarded as a function of the structural

¢ Chernoff and Divinsky in Chapter X use a slightly different definition of
moments from that given above in (5.49). As applied to the case under considera-
tion here, they define 7y, = Ty , etc. With this definition of moments, the last
term in (5.50) becomes — (1/207%) [1 —«lM[1 —x].

# The vertical bars in | detT B | denote the taking of the absolute value of the
guaniity shown between bars.
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parameters A, Z, this is the likelihood function. The corresponding
logarithmic likelihood function may be written, using (5.28),

L{a, Z) = (1/7) log Fz(y | 2)
= xs + log |det B| — 3 log det & — 3 tr (A’ZTAM).

As remarked in Appendix C, the form of Fr(y|2z) or of L(A, Z} is
preserved by a nonsingular linear transformation of A and the corre-
sponding transformation of Z. In particular, this is true for the multi-
plication of all coefficients ags (B = 1, -+~ , G + K) of the gth equation,
say, and of the related parameters a,4 (h 3 g) by the same nonvanishing
scalar, and the multiplication of a4, by the square of this scalar. Hence
a normalization rule on an equation places no restrictions on the ratios
of the likelihood-maximizing values of the coefficients of that equation.

The maximization of this function under a prior restrictions on A
only is most conveniently carried out stepwise. First we assign a specific
value A to A (which is thus given the role of 8 in Section 5.5) and maxi-
mize with respect to the elements of = (in the role of 5). This yields, by
the method illustrated in Appendix D, the conditional maximizing value

(5.52)

(5.53) Z(R) = AMA’

of T for the given value A of A. This formula is similar in structure to
(5.38) and allows an analogous interpretation. Let us note first that the
moment matrix M may be written as follows:

1 & ks TS LATR T TS & 1,
(554) M = TE ......................... = = 2 X%
=1 fux1
TorK X - TorEale+R.e

Sukstituting this expression in (5.53) we have

T
(5.55) $(R) = L3 Arizm &
T =
Hence,
v - 1 = -
(5.56) 2B =5 ; wy(B)u. (&),
]l
where
(5.57) wy(A) = Az t=1---,7
represents the “sample” residuals wi (&), - -+, ue{A) obtained if the

assigned value & is substituted for A in the structural equations (1.21).
Now 3(A) is the sample covariance matrix of these residuals. We em-
phasize again that these covariances depend on the assigned value A
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If the expression (5.53) for £(A) is substituted in (5.52) one obtains™
the concentrated logarithmic likelihood function, in which we now
replace A by A,

(5.58) LP(A) = & + log{det B| — § log det (AMA").

The value A of A that maximizes this function under the a priori restric-
tions imposed on A is the maximum-likelihood estimate of the true
coefficient matrix A.

If, having obtained A, one now desires the maximum-likelihood
estimate S of Z, this may be obtained from (5.53) by substituting A
for A,

(5.50) S = AMA'.

Thus the maximum-likelihood estimate S of Z is the covariance matrix
of the residuals u(4) calculated from (5.57) by taking & = A.

The method of estimation just described presupposés and utilizes a
priori information concerning the linearity of the complete system of
equations. It also permits the utilization of all a priori restrictions on
the values of the coefficients of the equations, and more efficient esti-
mates are obtained according as more (valid) restrictions are utilized.
Whenever all a priori information on parameter restrictions and equa-
tion forms is utilized, this method, as indicated above, is called the full-
information maximum-likelihood method.

If all of the structural equations are to be estimated, and if it has
already been decided to use some overidentifying restrictions on the
coeflicients of each equation, then it is economical te use all information
available and believed to be valid, because of the double advantage of
more eflicient estimates and fewer unknown elements of A to be com-
puted. A conflict between efficiency of estimates and economy of com-
putation arises only in deciding whether or not to utilize any over-
identifying restrictions at all for certain equations. It can be shown
[Koopmans, Rubin, and Leipnik, 1950, Section 3.2] that in the very
special case in which each structural equation is subject o the minimum
number of restrictions requisite for identifiability, the full-information
maximum-likelihood estimates of A and T are the same functions of the
observations as the indirect least-squares estimates of these parameters,
and hence have the same numerical values and the same sampling prop-
erties. In that case their computation by the indirect least-squares
method is likely to be more economiecal, and some sacrifice of efficiency
of estimates by disregarding a few overidentifying restrictions may
sometimes be justified by these computational economies.

" For details, see Appendix D.
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If all of the equations of a subset are subject to the minimum requisite
number of restrictions, then the maximum-likelihood estimates of the
coefficients ag of the subset consisting of the remaining (possibly over-
identified) equations are identical with the subset estimates to be dis-
cussed in Section 6.1 and are in general more economically computed
by the method described in that section. Again, it may sometimes be
justified to disregard some overidentifying restrictions to achieve these
computational economies.

We will not enter into further detail here concerning full-information
maximum-likelihood estimation since an extended discussion is given
by Koopmans, Rubin, and Leipnik [1950} and since the computation
procedures related to it are discussed in Chapter X. However, it is worth-
while pointing out here that eonsiderable computational economy would
result if the model should specify that disturbances in different equations
are uncorrelated (i.e., that Z is diagonal). Since the a priori basis for
such a specificagion is uncertain, we shall not make any such assumption
in the discussion of Himited-information methods in Section 6. That is,
the term “‘a priori restrictions (or information) on a set of equations”
will continue to be used in the sense of “‘restrictions on the coefficients
of those equations™ only.

6. Limrrep-InrForMaTIiON METHODS OF MAXIMUM-LIKELIHOOD
EsTIMATION

6.0. Introduciion. In the introduction to Section 5 we stated that
maximum-likelihood estimation methods are available which wutilize
varying amounts of the a priori information concerning the linear
model &7 in deriving estimates of any set of its parameters. There we
described the full-information maximum-likelihood method, which uses
all of the a priori information in estimating all of the parameters. In
the present section we shall introduce and discuss maximum-likelihood
methods that may utilize only part of the a priori information or that
can be used even if that information is fragmentary. These will be
called limited-information maximum-likelihood methods.

For the estimation of a given subset of the structural equations, all
a priori restrictions on these equations are of course relevant, and a
mintmum requisite number of restrictions on each equation is essential.
On the other hand, for the same limited purpose of estimating that
subset of equations, a priori restrictions on the remaining equations of
the model can be of value (in the sense of increasing efficiency of estima-
tion) only when these restrictions are c)*areridentii},’ing,71 i.e., only when

™ This follows from the fact that only overidentifying restrictions on A imply

restrictions on I and thereby on the distribution of the observations. See the last
paragraph of Section 6.5 and the next to last paragraph of Section 5.7.
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‘they are more than the minimum requisite for identifiability of the equa-
tions to which they apply. If only the “minimum requisite” information
(or less) is available for the remaining equations, this information may
just as well be ignored for the purpose under discussion. Hence the
choiceis essentially that between utilizing any available set of over-
identifying restrictions on the remaining equations or ignoring all restric-
tions on them. The methods presented in this section correspond to the
second alternative. We shall show that, by the application of the prin-
ciple of stepwise maximization, the coeficients of any subset of equations
in ©r may be estimated without the use of a priori restrictions relating
to equations not in that subset. The subset may, of course, consist of
only one equation

The estimates of the coefficients of a subset of equations so obtained
{without the use of a priori restrictions on the remaining equations) are
mndeed maximume-likelihood estimates provided that the model &7 is
valid. For &5 to be valid it is necessary, among other things, that the
remaining equations be linear and that the correct classification of
endogenous and exogenous variables be used. It follows from the re-
marks made in Section 5.2 that if &r is valid the estimates in question
are consistent” and that they are also asymptotically efficient in com-
parison with all other asymptotically normal estimates using the same
or less information.

There are several factors that have prompted the study of limited-
information methods. While desirable properties of estimates are ob-
tained in greater degree the larger the amount of valid and relevant a
priori information utilized in their derivation, it is in general true that
the difficulty, time, and expense involved in their computation increase
with the number of equations for which overidentifying information
is employed. For this reason, as has already been pointed out, even if
estimates of the coefficients of all equations are sought, it may be pre-
ferred to sacrifice somewhat the quality of estimates for a saving in time
and computational resources. Thus, one may choose to estimate the co-
efficients of all equations by dividing the set of equations into subsets
and estimating the coefficients in each subset without the use of a priori
restrictions on equations not included in it.

The incentive for disregarding a priori restrictions is even greater
when the researcher is interested only in obtaining estimates of the co-
efficients in some equations of the model and is prepared to sacrifice the
greater efficiency of the estimates that would result from utilizing
“extra’ restrictions on the equations he is not interested in. In that case

7 It will appear in Chapter VII that consistency is not lost if certain specifica-
tions of the model Sy are relaxed.
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he can concentrate almost entirely on the subset of his interest. Finally,
the econometrician may find that he does not possess the knowledge on
which to base a priori restrictions on the coefficients of certain equations
outside the subset of his interest. But, as long as he maintains the as-
sumption of linearity of the complete system and correctly specifies the
list of exogenous variables occurring in that system, he can still obtain
maximum-likelihood estimates of the coefficients of the equations he is
interested in by the adoption of limited-information methods. The in-
formation utilized is in this case limited by necessity rather than by
choice,

In the remainder of Section 6 we shall discuss first the maximum-
likelihood estimation of the coefficients of a subset of equations, which
was developed originally by Rubin. We then consider the special case,
developed earlier by Anderson and Rubin, in which the subset consists
of only one equation. This maximization problem can be expressed in
terms of what we shall call the least vartance ratio principle. Following
Rubin, we then show that maximum-ltikelihood estimation of the coefhi-
cients of any subset of equations (possibly the entire set}) may be inter-
preted as a generalization of the least variance ratio prineiple. After this
we develop In some detail the theory of the limited-information method
applied to a single equation.

The presentation and elaboration of these methods differs from the
forms chosen by their originators primarily in that we employ here the
principle of stepwise maximization as a device to develop the estima-
tion methods relating to a complete system, to a subsystem, and to a
single equation from a common point of view.

Finally, a summary of some of the resulis reached in Sections 5 and
6 1s presented in Section 6.5. It may be added that, wherever in the
present subsection we have spoken of the estimation of the coefficients
of a subset of equations, it is to be understood that the estimation of
the other parameters associated with such a subset—the variances and
covariances of the disturbances—ean be performed by a further simple
computation.

6.1. Maximum-likelthood estimation of the parameters of a subset of
the structural eguations. Let the set of (7 structural equations be divided
into two subsets, denoted by subscripts I and I1, containing &, and Gy,
equations, respectively. We wish to apply limited-information maxi-
mum-likelihood methods to the estimation of the parameters of subset 1
We shall not need or wish to use information concerning the restrictions
on the coefficients in the complementary subset II. We now partition
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the coefficient matrix A according to the partitioning of the equations,
as follows:

Ay
{6.1) A= [ ]
An

The corresponding partitioning of the covariance matrix of the disturb-
ances may be writter in the form

62) s — [21 1 2 n].
Zuy Zon

In Appendix E we apply the method of stepwise maximization to
remove from the likelihood function (5.52) all parameters Ayr, Zir 11,
¥; 11 associated wholly or partly with subset II. If we were to attempt
i take into account “extra’ restrictions on eguations II in that partial
maximization, the resulting concentrated likelihood function in terms
of the coefficient matrix Ay would be complicated indeed. However, as
u consequence of our decision to disregard such overidentifying in-

formation, we obtain in Appendix E the following relatively simple
function:”

L®(A) = xe + % log det (B; WBY)
— Llog det W — i log det (A; MAY),

where B;p is the part of A; = [Br I'i] containing the coefficients of
dependent variables y; . The function {6.3) was first obtained by Rubin
[1948] by a somewhat different method of derivation.

Estimates Ay of A; obtained through maximization of this function
subject to the a priori restrictions on Ay are limited-information maxi-
mum-likelihood estimates that disregard any knowledge of the restric-
tions on the elements of A . However, their derivation presupposes
that the complete system is linear, and, because of the manner in which
Af and W appear in (6.3), it is necessary for their computation to know
the predetermined variables that appear in the equations of the entire
system.“

(6.3)

7 When G1 = G, det B{W B; = det? B-det W. Thus it is readily seen that the
funetion (6.3) becomes that in (5.58) if the subset of equations being estimated ig
the entire set.

75 Careful scrutiny of the matrix products in (6.3) will reveal that moments in-
volving those dependent variables y: excluded from suhset I by the model oceur in
(6.3) only in the parameter-free term —# log det W, and therefore affect only the
vilue of the maximum, but not the value A; of the argument A; for which it is
reached
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It is implied in (5.59), since stepwise and simultaneous maximization
yield the same result, that the limited-information maximum-likelihood
estimate Sy of 211 is given by

6.4) Sir = AMAY.

6.2. Marimum-likelthood estimation of the coefficients of a single struc-
tural equation: The least variance ratio principle. Anderson and Rubin
[1949, 1950; Anderson, 1950], as noted in Section 4.6, originated a
method for deriving maximum-likelihood estimates of the parameters
of a single equation that ispart of a complete set of structural equations,
This problem is, of eourse, a special form of the one discussed above in
Section 6.1 in that the subset of equations whose parameters are to be
estimated contains only one equation.

Let us suppose that we wish to estimate the coefficients of the first
equation (4.9) of the complete set of structural equations (4.8). Again
the vectors 8 and v [in (4.9)] are partitioned as in (4.12) and (4.13) soas
to separate in each vector the elements prescribed to be zero from the
remaining elements, and the vectors y, and 2, are correspondingly par-
titioned as in (4.14). The equation to be estimated is then written

(6.5) Baya.: + Yxzx. = U ¢=1,---, 7.

We shall assume that the rank condition for the identifiability of (6.5}
is satisfied.

In the present case the concentrated likelihood funetion (6.3) be-
comes, but for an additive quantity independent™ of the coefficients a,

(6.6) L®%a) = 3 log 8WE — }log aMc/,
where
(6.7) a=[8 vl

In order to express this function only in terms of the unrestricted co-
efficients 8a and v+ , W may be partitioned as follows:™

©68) — [WAA Waaa ]’
Waaa Waaaa

7 For convenience the constant and the term —3# log det W, which includes
only functions of the observations and not struetursal parameters, have been
dropped from the expression.

76 We write the symbols A and « as subscripts to moment matrices as abbrevia-
tions for the fuller subseripts such as 4 , #as , 2, , 2,. » Which we shall only need
in one instance, in equation (6.19) below. Where only two subseripts, 4 or «,
oceur, the separating comma is superfluous and has been omitted.
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and 3 may be partitioned as follows:
M&A MA.AA MA* MA,**
MAA..A MAA,AA MAA.* MAA,**
Myea Mena Msx Mo pexe
M**,A M**.AA M**,* M**.**

corresponding to the partitionings (4.12) and (4.13) of «. We may now
write (6.6) as

6.10)  LP(aan) = 3 log BaWarhh — 1 log aasnM amatas ,

(6.9) M

it

where
(6.11) aas = [Ba v

and M (a4, 18 the moment matrix M with the matrices in the second and
fourth sets of rows and columns of the partitioning in (6.9) deleted.

We shall perform one more partial maximization of the funetion (6.10).
In this step we regard v+ as the “y-vamnable” and 8. as the “f-variable,”
by analogy with Section 5.5. To eliminate v+ by maximization it is neces-
sary to find that value $a(8a) of v« which for given 8, minimizes au#*,
- M awraiar,. Now it is readily seen that

a(d*)M(A*)Q”(&*) = BaMassfBa + 28s Maxvs + v Mywvs

1<
= m Z (ﬂayl.; + ¥« ka,:)z.

[

(6.12)

Let us form, with the given 84 , a scalar “composite’” dependent variable
#1: that i1s a linear combination

(6.13) 1 = Bala,e
of the dependent variables ya, ; occurring in the equation to be estimated.
Writing
| R
(6.14) @eany M as) a;A*) = 5 ; (G + 7= z%.0)",

we see that the values $4(8,) that, for given 8a , minimize oM ax
-aa%) are but for sign equal to the least-squares estimates of the coef-
ficients in the regression of the composite dependent variable #, on 2« .
(i.e., on the predetermined variables whose coefficients in the equation
being estimated are not specified to be zero). But, from least-squares
theory [ef. equation (5.18)],

(6.15)  $4(Ba) = — myaeMak = — faMasMes = — BaPlhs.
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Hence, from (6.12), using (6.15), we may write the minimum of
apwnd (A*,a'm*, with respect to v« for given 8a as follows:

.1 & ' Y
616 "7 ‘2 (Bayar + Taza.r)

= Ba(Mas — MaxMui Mx3)Bs = BaW3haBi,
if we define
(6-17) PVKA = M — MA*M;;:M*A .

By comparison with the interpretation of W given at the end of Sec-
tion 5.4, we see that 5,1 285 is the “‘sample’’ variance, for given Ba ,
of the residual in a regression of the composite variable §,, on z« .
(i.e., on the predetermined variables not excluded from the equation
being estimated).

Similarly, BaWaaB8a can be interpreted as the “sample” variance (for
given @) of the residual in a regression of . on all the predetermined
variables z, (including those whose coeflicients in the first equation are
specified to be zero). We may write this, using an unrestricted vector
+t =l .- k], as follows:

1= _

(6.18) m}rn =2 Bayas + v'20)7 = BaWasBh,
b (2]

where”’

(6.19) W,,;A HE W”a% = MynyA - ﬂ’fyazM:lezyA .

We shall assume that both Wi, and Was are nonsingular.”

Using (6.16) and (6.18), we may write the concentrated likelihood
function that has only the elements of the vector S84 as its arguments,
as follows:

r
min Z (Ba yf;.: + vazei)’

L) = — }log 27
(6.20) ngn 2 (Baya: + vz
BaWaaBa
= —1lo 7 E—Ilogl(ﬁ),
2 gﬁAWAABa 3 A

say, where [{84) 1s termed the variance ratio.

77 See footnote 76.
* In view of the nonsingularity of £ and hence of Q, specified by the model,
this assumption excludes only samples whose probability of occurrence is zero.
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The maximization of L" (8) will yield limited-information maximum-
likelihood estimates bs of 8a . These may be substituted for 8, in equation
(6.15) to obtain the limited-information maximum-likelihood estimates

(6.21) e+ = Fx(ba) = —baMasxMex = —baPia

of v« . But the maximization of L™*(8s) involves the minimization of
the variance ratio [(8,) with respect to B4 . It is for this reason that this
procedure for obtaining estimates of the coefficients of a single equation
is also called the least variance ratio principle.

The least variance ratio principle for the estimation of the coeffi-
eients of a single equation has an intuitive appeal, independent of the
fact that it yields maximum-likelihood estimates in the present linear
model with normal disturbances. The principle explicitly divides the
variables of the complete system into four classes, arising from the
dichotomies “dependent” versus “predetermined,” and “excluded
from” versus “admitted to”’ the equation to be estimated. Within each
class variables are treated symmetrically. The excluded dependent
variables are ignored.

We note further that the regression of 4. (= Baya..) on all predeter-
mined variables z, , taken in the distribution (5.8) of y, for given z,, is
of the form '

(6.22) 8(fu | 20) = Yezar.

This follows from the form of (6.5), where v++ = 0, and from the fact,
noted in (1.19), that the disturbance u, 15 independent of all predeter-
mined variables z, = {2.: 2sx.. Thus, in the ‘“true’ regression (6.22),
the excluded predetermined wvariables zss, do not occur. Now the
least varlance ratio principle attempts to come as close as possible to
such a situation in the sample. It estimates the unknown coefficient
vector B by such a veetor bs that, if ba is substituted for 8a in the defi-
nition (6.13) of the composite variable #, , the relative increase in the
residual variance in a sample regression of #h, on the predetermined
variables, which results from the exclusion of the variables ze«,,, shall
be as small as possible. In this way the identifying restrictions and, as
the case may be, any extra (overidentifying) restrictions on the equa-
tion to be estimated are properly used, while restrictions on any other
equations are ignored.

Because of these intuitive merits, it is not surprising to find in Chapter
VII that the least variance ratio estimates of the coefficients of a single
equation, or the generalized least variance ratio estimates for a subset
of eguations, discussed below, have good properties even in certain
partially nonlinear models with nonnormal disturbances. When the
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model & is valid, however, their chief recommendation lies in the fact
that they are maximum-likelihood estimates, with the properties of
consistency and asymptotic efficiency (within the class of estimates
using the same a priori information).

6.3. Interpretation of the mazimum-likelihood estimation of the coeffi-
cients of a subsel of the structural equations as an application of a gen-
eralized least variance ratio principle. It was first shown by Rubin [1948]
that the maximum-likelihood method of estimation of the coefficients of
any subset of the structural equations may be regarded as a generaliza-
tion of the least varianee ratio method. For readers interested in this
generalization, we state it without proof in this subsection because the
expression for the concentrated likelihood function involved is a direct
analogue of the expression (6.20) just derived. Thereafter we shall, in
Section 6.4, continue our discussion of the special case of a single
equation,

Let us rewrite equation (6.3) in the following form (omitting the con-
stant and the term that does not involve parameters):

det (A, M A;))

6.23 L% = -1 ( -
( ) (Ap) z 108 det (B, WB))

The interpretation we shall give to this expression involves the use
of a concept known as generalized variance, which is used in multi-
variate statistical analysis. The generalized variance of a multivariate
probability distribution is defined™ as the determinant value of the
covariance matrix of the variables in question.

As in the case of ‘the variance, the term can also be applied to a sample
instead of a- distribution. Let- us again assign to B; the role of 6 in
Section 5.5. In the given value of B; a number of elements must be zero
to meet the a priori restrictions. We now define a vector §; of as many
(G1) composite dependent variables as there are equations in subset I,

(6.24) :t}'; = [f - Fol = Bly: .

Thus the element in the ith row of this column vector is the sum: of
produets of the jointly dependent variables and their coefficients in the
7th equation of the subset being estimated. It is not difficult to show that
det (B,WB)) is the generalized ‘“‘sample’ variance of the residuals in
the least-squares regressions of each element of 7, on all the predeter-
mined variables in the complete model. Writing for a moment Al =

7 Cf., for example, Cramér [1946, pp. 301, 406].
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[B T, it can be shown further that the (unrestricted) coefficients
T{(B;) of these regressions can be obtained by minimizing

T
(6.25) det (Al MAL) = det {%, ; By, + Tz (Bry: + P}zi)’}

with respect to the unrestricted matrix® 'l as well as, in direct accord-
ance with the least-squares principle, by minimizing separately each
diagonal element of AIMAY. Hence, applying stepwise maximization
to the function (6.23), the limited-information maximum-likelihood
estimates B of the coeflicients By of a subset I of a complete set of
equations ecan be obtained by maximizing with respect to By, subject
10 the a prior restrictions given, the concentrated tikelihood function

min det ((B; TWM[B; Ti)

. L(ﬁ)(B) - 1 10 ]_"_I(re:tr.)
(6.26) ' * %% Thin det (B FIMIB, W)

I‘I( unrestr.}
= —% log i(By),

say, which is, in view of (6.25), an expression entirely analogous to
(6.20). Corresponding estimates C'; of T'; are obtained as those values
of I'; that perform the minimization in the numerator in the second
member of (6.26) when B; is substituted for By. Finally, estimates
511 of the variances and covariances of the disturbances in the equa-
tions of subset I are obtained from the proper submatrix of (5.59).

The function I(By) is termed the generalized variance ratio. In view of
(6.24) the limited-information maximum-likelihood estimates B, of B,
are obtained by minimizing the generalized variance ratio I{B1), subject
to the a priori restrictions on Bg .

6.4. Mazimum-likelihood estimaiion of the parameters of a single struc-
tural equation, concluded. We have found that to maximize the concen-
trated likelihood function L®(8a) of the coefficients of a single equa-
tion, given by (6.20), it is necessary to minimize the expression

r
* o min E (Ba y:s.x + 'Y*Z:s.:)z
{6.27) 18s) = BaWaa 6-9 o e =1

Was B . -
BalWasBa min 2. Bayas + v
¥ f==1

with respect to 8, . The value of this function isunchanged if 84 is mul-
tiplied by a nonvanishing scalar constant®” u. Tt follows that, if a mini-
8 No similar equivalence holds, in general, for minimization with respect to

a restricted matrix I'y .
# See the comment in Section 5.7 immediately following equation (5.52).
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mum of (6.27) is reached for 84 = ba, it is also reached for s = ubs .
Therefore, since the effect of imposing a particular rule of normalization
on 84 in minimizing (6.27) is only to choose a particular value of g, the
ratios of the elements of bs remain unaffected thereby. We can there-
fore proceed without normalization for the present. If we differentiate
the logarithm of the second member in (6.27) with respect to the ele-

ments of Ba = [Bn - Biea], and set the derivatives equal to zero,
we obtain the following necessary conditions for a minimum,

*
(6.28) (BAWQA)i _ (ﬁAT’VAA_Lv (’L — 1’ . ,GA),

BaWxsBa  BaWaafi
where (8,Wia); denotes the ith element of the vector 8,Wi, , and

(BaW an): is similarly defined. In view of (6.27) the conditions (6.28)
may be written as

(6-29) (BAW:A)i = l‘(ﬁAWAA)-‘ (2' =1,--, GA)’
ot where [ stands for [ (84), as
(6-30) .SA(W:A - ZWAA) = 0.

For a given value of [ (6.30) may be regarded as a system of G homo-
geneous linear equations. For this system to have a nonvanishing solu-
tion Ba at all, it is necessary™ that

(6.31) p(Was — IWas) < G* — 1,
and hence that
(6.32) det (Wia — IWas) = 0.

The left-hand member of (6.32) is a polynomial in I of degree® G4,

We have now reached the conclusion that, if the function l(ﬁg) de-
fined by (6.27) possesses a minimum, the ratios of the elements of a vee-
tor 84 = b, for which this minimum is reached must be obtainable by
finding a root {; of the polynomial equation (6.32), substituting its
value for I in (6.30), and solving for 8, . Let %’ denote a normalized
solution. Postmultiplication of (6.30) by 5. then shows that the value
reached by 1(84) in the point b5” isin fact equal to the root I; .* It fol-

& See, for example, MacDuffee [1943, Theorem 29, p. 60].

8 See footnote 78 and the ‘a.ssumP_tion to which it is attached.

8 The possibility that by Wab.'' ' might vanish is excluded by the positive
definiteness of Waa . That W}, and Waa are symmetric positive semidefinite follows
from the fact that W5, and Wy, are moment matrices. For discussion of these asser-
tions and definition of the term *‘positive definite,”’ see Appendix B. Was will be
positive definite with probability one whenever, as we have assumed, E, and

hence 0, is nonsingular.
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lows that only the smallest root I, of (6.32) can possibly lead to an
absolute minimum (45"} of I{Ba), If an absolute minimum exists. That
the smallest root does lead to an absolute minimum can be proved on
the basis of the continuity®™ of the function (6.27). However, it can in
the present context also be proved with more elementary means, and
this is done in the last paragraph of Appendix F.

Since bY"” is now our maximum-likelihood estimate of Ba, we shall
denote it simply by by . It is defined by the condition

(633) bA(W:A - IIWAA) = Os ll “~<.. li ('E = 2! Tt GA)

plus such a normalization rule as may be imposed.

A procedure for computing I, and b, is described in Section 3 of
Chapter X. It may be noted here that in computation it is convenient
to put (6.32) and (6.33) in slightly different forms, descfibed in detail
by Chernoff and Divinsky.

We must for a moment discuss the possibility that

(6.34) p(Wis — W) < G* — 1.

Should this eventuality arise, it would be possible to obtain an infinite
set of (normalized) values of by as solutions of (6.33). It is shown in Ap-
pendix F that if Was is nonsingular (as we have assumed above),
p(Wha — LWas) = G* — 1 whenever I, is a single root, and
p(WL — LWas) < G* — 1 when L;is a multiple root. In particular,
this assertion relates to the smallest root I, with which we are con-
cerned. It follows from this that if [, is single, a solution 84 = bamay be
obtained to equation (6.33) that will be unique after normalization. It
may be shown that if the order condition of identifiability of the equa-
tion in question is satisfied, the smallest root [; of (6.32) will be single
save for exceptional samples, which occur with probability zero.

It will be recalled from Section 4 that indirect least-squares estimates
of the coefficients of the first equation of the model S, may be obtained
if the order condition of identifiability is just satisfied, K** = G* - 1,
but that this method fails when K** > G* — 1. We shall now show
that when the order condition for identifiability is just met (the case
of minimum requisite information), the limited-information single-
equation estimates obtained by the procedure just outlined are identical
with the indirect least-squares estimates. To do this we must further
discuss the smallest root I, of (6.32), which is at the same time the mini-
mum of I{34). '

It is easily shown that the value of the smallest root 4 of (6.32) can
never be less than unity. This follows from the fact that 1(8,) is, by

% On the compact set 8,8, = 1.



174 T, ¢. KOOPMANS AND WM. . HOOD [caaP. v1

(6.27), a ratio of two residual variances, the denominator of which can
never exceed the numerator. The numerator is the variance of the
residual from a regression of §a,. on 2« whereas the denominator is the
variance of the residual from a regression of Fa.; on 2, = [2x.s  Zss.d.
Since the regression coeflicients in quesiion are estimated by the mini-
mization of resideal variances, the narrower choice of dependent vari-
ables in the regression associated with the numerator has the effect of
making the residual variance in the numerator greater than or equal
to (but never less than) the residual variance in the denominator.

The condition under which ,; = 1 follows from an extension of the
same reasoning. Since [/, is the minimum of I(8,) as defined in the last
member of (6.27), l; = 1 if and only if there exists a value b of 8a for
which the minimizing value §7(ba) of the unrestricted vector in the
denominator of I(ha),

(6.35) $1(Ba) = ~baMa, M7 = —baPs, = —balPasx  Paxsl,
has the property
(6.36) Fix(bs) = —baPaas = 0.

For, if no such value b exists, the minimum residual variance in the
numerator of (6.27) must exceed that in the denominator, and I, > 1.
On the other hand, if such a value b, exists, the minimum residual vari-
ances in numerator and denominator must be equal for that value ba
of Ba, and the minimum value §; = 1 of I{84) is reached there. Thus,
L = 1if and only if (6.36) has a solution by, that is, if and only if

(6.37) p(Paxs) € G* — 1,

and, in that case, any solution ba of (6.36) maximizes the likelihood
function or, equivalently, minimizes the variance ratio (6.27).

Condition (6.37) is satisfied whenever the order condition of identi-
fiability is just met (K** = G* — 1). We recognize in (6.36) the condi-
tion (4.30) defining the indirect least-squares estimates ba of 3s , while
the corresponding estimates ¢« of v« given by (4.31) areread from (6.35).
Thus the least variance ratio principle derived by applying the limited-
information maximum-likelihood method to a single equation coincides
with the indirect least-squares estimation of that equation whenever
the latter method is applicable. Of course, unique estimates b, (but for
normalization) are obtained only if

(6.38) p(Pass) = G — 1,

an event occurring with probability one whenever the order condition
for identifiability is just met.
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If K** > G* — 1, we have with probability one p(Pas+) = G° and
hence I} > 1. In this case the indirect least-squares method fails, but
the least variance ratio principle produces limited-information maxi-
mum-likelthood estimates. These estimates b, and c¢s may be derived
from equations (6.33) and (6.21), and are unique if [, is a single root,
an event occurring with probability one.

The reader wili have noticed that, if the order condition of identifia-
bility is met, the method described will produce unique estimates with
probability one even if the true structure is such that the rank condi-
tion for identifiability is not met. What warning does the researcher
receive that this is the case? This question arose also at the end of
Section 4.5, and the answers given there may be restated here in some-
what more general terms.

There are two useful warning signals that have a high probability of
being operative in the case under consideration. The sampling variance
of the maximum-likelihood estimate of an identifiable parameter &
tends to infinity whenever some other parameter 6, tends to a value
63 that would destroy the identifiability of 8, . It is therefore probable
that the estimated sampling variances of a coefficient, of which the
evaluation is discussed in Section 7, will be high whenever that coeffi-
cient is not identifiable, or is nearly so.

The second warning signal is computationally less expensive to ob-
serve. It has already been mentioned, in Chapter II, Section 5, that the
hypothesis of identifiability of a parameter or a set of parameters is
always subject to statistical test. In Section 8.2 we shall describe a
statistical test of the simultaneous identifiability of all ecefficients of a
structural equation by a given set of a priori restrictions on that equa-
tion.
~ For the sake of completeness, we recall that the leading element sy,

in (5.59) gives us the maximum-likeithood estimate

Mas Mo | [0s
(6.39) su = [bs cxl '
Max Mys Cx

of the variance ¢y of the disturbances in the first structural equation.
The present derivation of limited-information maximume-likelihood
estimates of the parameters of 2 single equation conceals an interesting
property which was central in the original presentation of the method
by Anderson and Rubin. In their treatment [Anderson and Rubin,
1949, Section 5], the coefficients II of the reduced-form equations are
estimated by maximizing the likelihood function (expressed in terms of
the reduced-form parameters) subject to the restriction that p(Ia +x) <
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G* — 1. This restriction ensures that unique estimates [bs ¢+] can be
derived with probability one from the estimates II so obtained. The
estimates [ba c«] obtained by Anderson and Rubin are, of course, the
same functions of the observations as those obtained by the derivation
we have given.

6.5. Conclusion. Let us now summarize some of the results reached
in Sections 5 and 6. We have shown the relation between a priori restric-
tions on structural coefficients and the identifiability of these parameters
and have argued that meaningful estimation presupposes identifiabil-
ity. On the basis of the (necessary) order condition for the identi-
fiability of a given structural equation we have considered two possible
situations. In the first, the restrictions on the coefficients of that equa-
tion are just adequate to satisfy this condition (the “minimum requisite
information” case). In the second, more than the minimum requisite
number of restrictions exist.

Maximum-likelihood methods of estimation have been discussed that
vield eonsistent estimates of structural parameters and that vary in
the amount of a priori information utilized with regard to the restric-
tions on the coefficients of other equations of a model than those being
estimated. If the model &y is valid, these estimates are in each case
asymptotically efficient as compared with other estimates using the
same or less information. If just the minimum requisite number of
restrictions is available for each equation of the structure, the maximum-
likelihood estimates of the structural parameters will be the same
funetions of the observations whether each equation is estimated by
the indirect least-squares method, by the limited-information single-
equation method, by the limited-information method applied to any
other subset of the equations, or by the full-information method. In the
more general case, in which some equations are provided with “extra”
{overidentifying) restrictions, indirect least-squares methods are not
applicable to those equations without neglecting restrictions on them,
and the maximum-likelihood estimates vary according to the amount
utilized of overidentifying information that pertains to other equations.
In general, the more (valid) overidentifying information is used in deriv-
ing maximum-likelihood estimates, the more efficient the estimates will
be, at least asymptotically and presumably also for finite samples.

Let us also review the connections between the identifiability and es-
timation of the parameters A, Z, of the structure and the parameters
I, @ of the reduced form. The parameters II, @ are always identifiable
in linear models &r of the type here considered, whereas A, £ may or
may not be. While we have only made explicit the a priori restrictions
imposed on the coefficients A, restrictions on the coefficients IT are im-
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plied by those on A whenever at least one equation of the structure is
subject to “overidentifying” (i.e., more than the minimum requisite
number of) restrictions. Parameters Z, and therefore also 2, have been
left unrestricted except for the requirement of positive definiteness of
these matrices. Maximum-likelihood estimates of I,  may be obtained
using all, some, or none of the “overidentifying’’ restrictions on the strue-
tural parameters, but only unrestricted estimates have been considered
in this chapter. Maximum-likelihood estimates of identifiable parame-
ters A, £ may be obtained indireetly from corresponding estimates of
11, ©, in which case their properties will depend on the extent to which
overidentifying restrictions were utilized in the derivation of the esti-
mates of II, @ (as is done by Anderson and Rubin). Alternatively and
equivalently, as discussed in Sections 5 and 6 of this chapter, maximum-
likelihood estimates of A, £ may be obtzained directly by maximizing the
likelihood function expressed in terms of these parameters. Again, in
estimating any row of A {and the corresponding elements of =) a choice
is required as to what amount of overidentifying information that
may be available concerning the rest of the equations will actually be
utilized. This choice is guided by balancing computational economy
against possible loss of efficiency in estimation.

7. ASYMPTOTIC SAMPLING VARIANCES AND COVARIANCES OF THE
MaxmmoMm-LikeLiHOOD ESTIMATES

Within a wide range of models, including the model & considered in
this chapter, maximum-likelihood estimates of identifiable parameters
have the property of asymptotic normality, and a general formula is
available for the asymptotic sampling variances and covariances of
such estimates. For models involving independence of successive ob-
servations, proofs of this statement and of the formula can be found in
several textbooks." Extensions of these results relevant to the model
&y have been given by Mann and Wald [1943] and by Koopmans,
Rubin, and Leipnik [1950, Section 3].

As before, let

(7.1) L(8, zy = (1/T) log F(8, z)

represent the logarithmic likelihood function associated with the model

&7, expressed in terms of a parameter vector # and sample vector z.

Define a matrix L = [I;;] with typical element

o'L(6,z) _ [ 3°L(6, )
86:08;, a8, a;

38 For instance, Cramér [1946, p. 500).

(7.2) lij=¢& Fr(8, z) dy,(1) --- dye(T),
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the expectation being taken over the distribution of the endogenous
variables y. Then, if # denotes the vector of maximum-likelihood esti-
mates 6, of the components 8, of 9, the sampling distribution of the sta-
tistics

(7.3) VT (6: — 6)

in sampling from a structure of the model &, tends, as T becomes
infinitely large, to & multivariate normal distribution with means zero
and covariance matrix

(7.4) ngaﬁ—w@—w=—Uﬂ

the negative inverse of L.

The same formula (7.4) remains applicable [Koopmans, Rubin, and
Leipnik, 1950, Section 3.3.10] if # comprises only a subset of the param-
eters of the model &, while L{8, ) represents the corresponding con-
centrated logarithmic likelihood function, obtained by prior maximiza-
tion with respect to the remaining parameters. Thus, we can evaluate
sampling variances and covariances of the estimates 4 of A from the
likelihcod function (5.58), of the estimates A4, of the coefficients A, of
a subset of the structural equations from the likelihood funetion (6.3),
and of the estimates a of the coefficients « of a single equation from the
likelihood function (6.10).

Of course, the matrix L™ in (7.4) is a function of the unknown param-
eters 6. It can be estimated by inserting for # the maximum-likelihood
estimates 8.

Computational procedures for the evaluation of L™ are described for
a number of different choices of # in Chapter X.

8. BrarieTical TESTS OoF THE VALIDITY AND OF THE IDENTIFYING
CHARACTER OF THE A PrIoRI RESTRICTIONS ON A SINGLE
STRUCTURAL EqQUaTiON

8.1. A test of the resirictions on one structural equation. So far we have
formaily treated the a priori resirictions on any structural equation as
a matter beyond doubt. This is a defensible tactic in that it helps us to
construct pieces of a formal theory that serve specifically defined tasks,
such as the estimation of parameters within the framework of a given
model. At the same time, it should not preclude us from considering
that the choice of the model itself is subject to uncertainty. We shall
now discuss a test, developed by Anderson and Rubin [1949, Section 6],
of a certain part of the specifications that enter into our model &y,
viz., the a priori restrictions on the coefficients of one particular struc-
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tural equation (say the first). The test ignores any restrictions relat-
ing to equations other than the first.

We choose as the “maintained hypothesis” a complete model Sy
which specifies the lists of dependent and predetermined variables, the
linearity of the structural equations, and the normality and serial inde-
pendence of the disturbances. It is convenient also to specify in S that
the exogenous variables 2, are linearly independent. However, &, im-
plies no restrictions whatever on the values of the structural coeffi-
cients. Hence, &, is not sufficiently restricted to identify any of the
structural equations.

We choose as the “null hypothesis” the model &} obtained from &»
by imposing on the coefficients of the first structural equation only
restrictions of the form

(8.1 a=[8s 0sa ¥x Ousl

used also in Sections 4.4 and 6.2. The “alternative hypothesis” is thus
the model &7 = ©; — &7 consisting of all structures of &, not satis-
fying the null hypothesis.

While we have expressed the maintained, null, and alternative hypoth-
eses 1n the form of models (i.6., sets & of structures), the theory of the
testing of hypotheses can now be applied on the basis of the correspond-
ing sets §§ of distributions of the observations. Corresponding to Sz we
have the class §r of distribution functions (5.24) of the observations,
represented by all possible values of the parameters IT, @ of the reduced
form. Corresponding to &y we have the subclass of 7 containing those
distributions for which

(8.2) p(axs) < G — 1,

because for each such distribution there is a linear combination of the
first G* equations of the reduced form, with coefficients 8, satisfying
(4.20), that meets the restrictions expressed by (8.1). Finally, corre-
sponding to &7 we have the subclass F» containing those distributions
for which

(8.3) p(nal**) = GA.

These correspondences permit the straightforward application of the
theory of testing hypotheses, in which the likelihood ratio criterion®
provides a useful test. This criterion is defined as the ratio of the maxi-
mum of the likelihood function F#{II, ©, x) with respect to II and Q as
restricted in §¥ [i.e., by (8.2)] to the maximum of that function within
&r bwith I unrestricted]. Application of this criterion as carried out by
Anderson and Rubin leads to the smallest root I; of equation (6.32) as

7 Bee, for instance, Mood [1950, Section 12.5].
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the appropriate test statistic. In Appendix G we show that the likeli-
hood ratio criterion is a monotonic function of ¢, .

In order to aid in the intuitive understanding of this test, we shall
here motivate the use of the criterion in question by a different reason-
ing. For expository simplicity we shall limit our discussion to the case in
which no lagged endogenous variables occur in the model @7, so that
all variables z; are exogenous and can be thought of as constant in re-
peated samples.® Since then the symbols z, and 2, have identical mean-
ing, we shall also use z to denote the vector Z defined in (1.22) [in which
the “prehistoric” elements ¥, {t < 0) now do not enter]. :

We shall make use of parameters Qs , Qx4 (to be defined), which in
some sense are structural counterparts of the sample quantities Wa,s ,
W%, . In this way we can define the smallest root A; of

(8.4) det (Qxa — AQas) = 0,

the “structural” counterpart of /;, and study its properties. The quan-
tities Qaa , 244 are to be defined as functions of “structural” moments
M.. constructed analogously to the functions of sample moments M,.
defining Was and Wi, . The structural moments M., will in turn be de-
fined as expectations of the corresponding sample moments, which are
conditional upon given values of the exogenous variables 2, for all rele-
vant values of {.
From the reduced form

(8.5} ¥y = Iz, + v,

and the independence of v, from z, , discussed in Section 1.6, we have
(8.6) 8(y: | z) = Ik,

Similarly, we now define

&) M., = &(M.. | 2) = ; 8 [20),

where x; = [y, =z, as the matrix of “structural” moments. These are,
by virtue of their definition, functions of the parameters II, ¢ of the dis-
tribution of the observations and of the moments M, of the exogenous
variables (which are likewise free of sampling fluctuations). In particu-
lar, of course, M., = M,,.

The submatrices My, and M,, of M,. can be evaluated from (8.5),
using the definition (1.25) of 2, as follows:

=3[ =

1 T , 1 T
M, = fZII;:',z,II +0+0+—28(vivg|z,)
=1 1=l

(8.8) |
= HMHH' + 9)
¥ See Section 1.3.



SEC. 8.1] ESTIMATION OF LINEAR RELATIONSHIPS 181

T
(89) M, = E Y Mziz = IM,,.
T =1

We are now ready to define the structural counterpart i, of Wis,
by analogy with (6.17), by

(8.10) Q%A = Mas — MasM7iMuy .

In order to relate it to ., we partition II according to
I,

(8.11) II = s My = [Max Mausl
HAA

and use (8.8) and (8.9) to obtain
Qi — Qan = Ou(M,, — M. M3k M*;)H’A

. O+ O 4 I‘IL*
(812) = [Has s« - ,
Ousx Maxex — ManaMax Maax [ Hass

= HA,** *M**,** Hg.** >
where
(8-13) *M*at.** = Mexxx — M**.*M:::M*.**

is the moment matrix of the residuals from regressions of the zax, on
the Bkt . -

Armed with this expression for 23, — Q4,, let us now return to the
polynomial equation {8.4) and write it as

det (Q:A — Aaa)

(8.14) ,
= det {5 ++*M s sxllpax — (A — 1)2a} = 0.

In order to explore the situation both under the null hypothesis and
under the alternative, we recall the specification that the exogenous
variables z; be linearly independent. This implies that the matrix
*M «x % is nonsingular, because if it were singular there would exist a
nonvanishing linear combination of the variables 24+, which would be
a linear function of the variables z4 ; contrary to the specification stated.
Finally, since *M s+, *+ is also, as already noted, a moment matrix, it is
positive definite. As observed in Appendix B, this implies that
HA,***M**,**II:\,** lS positive semidefinite.

1t follows from this and the positive definiteness of @ (and hence of
244), by Theorem 1 of Appendix B, that the smallest root A, of (8.14)
satisfies

(815) M — 1 p-2 0, or A\ 2 |
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It follows further, from Theorem 4 of Appendix B, that under the null
hypothesis [under which (8.2) applies]

(8.16) P gt * M sk xalla xs) < G2 — 1,
and under the alternative hypothesis [under which (8.3) applies]
(8.17) p(Las4* M 3xlly 04) = G2,

In the light of Theorem 1 of Appendix B, this implies that under the
null hypothesis

(8.18) M=,
and under the alternative hypothesis
(8.19) N> 1

We can therefore regard our problem as that of testing the hypothesis
that A, = 1 against the alternative that A; > 1. Accordingly, it seems
natural to choose as the test statistic the corresponding sample root 1, .
In traditional language, we are then testing the significance of the excess
of i over 1.

We have already seen, in Section 6.4, that I, = 1 if (8.1) represents
no more than the “minimum requisite” information.” This corresponds
to the fact that, if K* + G** < G — 1, the restrictions on the first
equation do not in any way restrict the distribution of the observations.
The alternative hypothesis is then empty, because (8.3) cannot hold if
K** £ G* — 1(= G — G** —1). Therefore a test is unnecessary, and
this is borne out by the inevitable outcome ; = 1, which fails to reject
the null hypothesis A, = 1.

However, if (8.1) corresponds to the case of “extra’ information,”
even if the null hypothesis (8.2) is satisfied, we will with probability one
have

(8.20) p(Paux) = G~
Hence, by an argument similar to that leading to (8.19), we shall have

(8.21) L>1

with probability one even if the null hypothesis is true.

An asymptotic distribution of & suitable function of I, can be derived
from the fact, demonstrated in Appendix G, that I is obtained as a like-
lihood ratio. Under the null hypothesis the statistic

(8.22) T log Iy

» See Section 4.5.
% See Section 4.6.
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is distributed asymptotically as x* with K** — G* + 1 degrees of free-
dom.” It has already been noted that the test is unnecessary whenever
this number of degrees of freedom is zero or negative.

Neither the fact that the test statistic ; can be derived from the
likelihood ratio principle nor the fact that !, has the asymptotic dis-
tribution indicated depends on the assumption, made here for exposi-
tory purposes, that there are no lagged endogenous variables among the
predetermined variables z,.” Anderson and Rubin [1950, p. 581] go on
to show that the asymptotic distribution of I, indicated is valid in a
much wider class of models & in which, for instance, normality of dis-
turbances is not specified (and hence I, is no longer obtainable from a
likelihood ratio).

8.2. 4 test of the identifiability of a structural equation. Most of the
analysis of Section 8.1 ean also serve for the discussion of a test to
détermine whether the a priori restrictions (8.1) on a structural equa-
tion are sufficient to identify that equation. In this case the maintained
hypothesis is the model, previously denoted @4 , in which the restric-
tions (8.1) are satisfied. These restrictions are now supposed to be suffi-
cient in number to meet the order condition (4.23) of identifiability. In
order to obtain a test of the (necessary and sufficient) rank condition
of identifiability it is convenient® to choose as the null hypothesis the
restriction

(823) p(na,**) ~.<\ GA -2
on II, and hence as the alternative hypothesis
(8.24) p(Maex) = G — 1,

because (8.2) holds in the maintained model &% . Taken literally, this
gives us a test of nonidentifiability rather than of identifiability.

Now, if the null hypothesis is satisfied, the value A = 1 will decrease
the rank of the matrix

(8.25) Qxa — AMlaa

81 For example, suppose that in s particular case in which K** — G2 + 1 =1
and T = 30 we found I, = 1.5. Then T log ; = x* = 5.283, and we would reject the
null hypothesis at the 0.025 significance level but not at the 0.0 level.

® Qur argument can be extended to the case in which lagged endogenous vari-
ables are present if we define the “structural” moments by the third member of
{8.7), which then no longer equals the second member. These moments reflect
the sampling fltictuations of the lagged endogenous variables, and the same is
true for L1 if the alternative hypothesis is true; but this does not destroy the in-
tuitive appeal of the argument.

%8 In order to follow the general practice of reserving the term null hypothesis
for the lower-dimensional subset of the parameter space.
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by at least 2, to a value at most G* — 2. It is shown in Appendix F
that in this case X = 1 is at least a double root of (8.4), whence the
second smallest root A, = 1. If the alternative hypothesis is satisfied,
Ba is uniquely determined by

(8.26) (23 — Qaa)Ba = 0,

which can only be the case if A = 1 is a single root, whence A, > 1. We
conclude that a test of nonidentifiability is obtained if we test the null
hypothesis that A; = 1 against the alternative hypothesis that A; > 1.

This, of course, suggests the use of the second smallest “sample”
root of equation (6.32} as the test criterion. In Appendix G we show that
this is indeed equivalent to the use of the likelihood ratio criterion.
However, the asymptotic distribution T log I is not a x° distribution
under the null hypothesis because of the multiplicity (A, = A;) of the
corresponding “structural” root A; in that case. Instead, we may use the
statistic

(8.27) T log (hi),

or its asymptotic equivalent 7(;y + L — 2), both of which are dis-
tributed asymptotically™ as x* with K** — G + 2 degrees of freedom
under the null hypothesis (provided that A; > A;). The test is unneces-
sary if this number of degrees of freedom is zero or negative because in
that case the order condition for identifiability is not satisfied.

8.3. Use of these tesls as a preliminary to the estimation of parameters.
It is natural to use the test of the set of restrictions on a given equation
before proceeding to estimate its coefficients, which is a subsequent
step in computational procedure. It is likewise natural to abandon
without further computation a set of restrictions strongly rejected by
the test. Similarly, it is natural to apply a test of identifiability before
proceeding with the calculation of sampling variances of estimates,
which require greater computational effort, and to abandon the latter
computation, and forego any use of the estimates, if the indication of
nonidentifiability is strong. But, since the models that are not rejected
form a selection based on the observations, it must be remembered that
probability statements associated with the sampling variances of the
estimates, valid for any preconceived model, are only approximately
true for this ¢lass of unrejected models.

A similar difficulty arises if the test of the set of all restrictions, or
some other likelihood ratio test of one set of restrictions against another,

* See Hsu [1941, Theorem on p. 193] and Anderson [1951, Theorem 5, p. 122].
We are indebted to M. A. Girshick and J. Gurland for elarifying this point.
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less stringent set, is used repeatedly to guide the choice of model. 1t
was pointed out in Chapter 11, Section 7, that these difficulties can only
be overcome in a theory of simultanecus choice of model and estimates.
The problems of the foundations of statistical inference, here touched
upon, fall outside the scope of this volume.

APPENDIX A

THE NECESSARY AND SUFFICIENT CONDITION FOR THE
IDENTIFIABILITY OF A STRUCTURAL EQUATION

We consider the identifiability of a structural equation (say the first)

(A1) Bayae + Oaa Yane F ys 2aa + Owe Zens = Uy
in the complete set of structural equations
(A2) Byt + Izt = u:

belonging to the model & , as defined in Section 1.
In Section 4.4 it was shown that a necessary and sufficient condition for the
identifiability of this equation is that

(A3) Plna.an} =062 — 1
Another rank condition of identifizbility, stated in terms of a submatrix of

Ba OQaa s Oﬂ:l

{A4) A=[B Il= [
Ay Asr Ax Ass

was mentioned in Chapter 11, Section 4, and proved elsewhere {Koopmans, Rubin,
" and Leipnik, 1950, Section 2.2]. Since both criteria are necessary and sufficient
for the identifiability of the equation in question, they must be logically equiv-
alent. It may be worth while to give here an explicit proof of that fact. Accord-
ingly, we use the criterion (A.3) to prove the following

TrEOREM: A necessary and suffictent condition for the identifiability of the struc-
tural equaiion (4.1) is that

(A-5) P[AAA As#] =0G-1

Proor: From the definition {1.23) of the reduced form we have

{A.6) (I —O] = B™a,
from which it follows that

Os.as  —Tlass
(A7) [IAA.AA —Uan.u] = B4
where

[OM O*ail
(A8) A =1 aes Aw)
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Multiplying both sides of (A.7) on the right by the nonsingular matrix
Tan.an —HM.“]

01‘*‘55 "'I*t.*t

(A9) EE[

we obtain

=l

Oaan Hae _
(A10) = = BT1A4IS,

Tan.aa Oaaee

from which it follows® that 1 and Ag have equal rank, But, from the definition
of II in (A.10), we see that?®

(A1) pll] = p[Mla.es] + (G — @)
and hence, since by (A.8) A§ and [Ass Ax«] also have equal rank, we have
(A.12) plAss  Aex] = p[llaxs] + (G — G2).

Thus, if (A.1) is identifiable {i.e., if (A.3) holds], (A.5) holds, and conversely.

ArpENDIX B
POSITIVE DEFINITE AND POSITIVE SEMIDEFINITE MATRICES

DerFINITION: Let A be the symmelric real mairiz of a quadratic form

an - Gin I -
(B.1) zdz = ---zd | ... = Z | BTiTi
ant -+ Gun] L 7 -
If
(B.2) zdr > 0

for all real veetors #, the quadratic form zAz’ and the matrix 4 are defined to be
positive semidefinite, If

(B.3) zdz’ > 0forall z = 0,

zdz’' and A are defined to be positive definite. Henee, in partieular, a positive
definite form is positive semidefinite.

A positive definite matrix is nonsingular, for, if A were singular, there would
be a nonvanishing x such that z4 = 0; so zAz' = 0, contradicting the definition
of positive definiteness.

If zA =z’ is a real and positive definite guadratic form and we substitute x = yP
for z, where P may be rectangular but has a rank equal to the number of its rows,
then the resulting form yBy’, where B = PAF’, is positive definite. For, if for

% Because the multiplication of a matrix by a nonsingular matrix does not
change its rank. See MacDuffee {1943, Chapter 11, especially Theorems 17 and 22
and Corollary 23].

% This follows readily as a generalization of property {h) of the direct sum of
two square matrices given in MacDuffee [1943, p. 114].
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some nonvanishing value § of y, §87’ < 0, then for # = #P (which does not vanish
because of the assumptions about the rank of P} we should have $4% < 0, con-
trary to assumption. It is proved similarly that if A is positive semidefinite,
then B is positive gemidefinite (irrespective of the rank of P).

These statements are frequently used with a square, nonsingular, choice of P.

By choosing P rectangular and so as to have only one nonvanishing element,
equal to one, in each row, it follows that any prineipal minor of a positive (semi-)
definite matrix is positive (semi-) definite.

We now prove an important theorem concerning the characteristic roots of
positive definite matrices.

TeHEOREM 1: The roois of the polymomial equation
(B.4) det {4 — AB) = 0,

in which B is a real positive definite matriz, are real if A is a real symmetric matriz,
posilive if A is also positive definile, and nonnegative tf A 75 posifive semidefinite.
Zero is a rool if A is posilive semidefinite bul not definite.

Proor: Let A\: be any root, real or complex, of equation (B.4). Then there
exists a vector z % 0, possibly complex, such that

(B.5) (4 — MB)Z = 0.

We write z = x 4 {y, where 7 and y are real vectors and ¢ is the imaginary unit
+ —1. It follows that

(B.6) 2(4A — AB) =0,

where 2 ig the vector of complex conjugates of the elements of z. Hence 242" =

MEBz', or (x — i) A(z + ty) = h(2x — iy)B{x + iy)’, or, afier some cancellation
of terms,

(B.7} zdz’ + ydy = r.(zBz" + yBy').

Sinece B is positive definite and 24z’ 4 yAy’ is real, A, must be real. In addition,
if A is positive definite, A, > 0 for all », and, if A is positive semidefinite, , » 0
for all n. If A is positive definite but not definite, the smallest root must be zero.

An important apecial cage of this theorem arises when B is the identity matrix I.
In this case the roots X, of equation (B.4), now written as

(B.8) det (4 — A) = 0,

are called the characieristic roois of A. We thus have the

CoroLLARY: The characleristic rools of a real symmetric matriz A are real, post-
tive if A is posilive definite, and nonnegative if A is positive semidefinite.

An important special case of a real symmetric matrix is the diagonal matrix

(B-g) A=
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1t is seen immediately from (B.8) that for such a matrix the elements on the lead-
ing diagonal are at the same time the characteristic roots of A. In order to indi-
cate, in the next theorem, a reason for the importance of diagonal matrices we
introduce the concept of an orthogonal matrix. This is 2 matrix R such that

(B.10) RR' = I.

Bince I is nonsingular, so is every orthogonal matrix, A transformation # = yR
with an orthogonal matrix R is called an orthogonal transformation.

TeEoREM 2: Any real quedraiic form zAz’, where A has characteristic rools

ALy v 0o, ke, may be reduced to the diagonal form yAy’ by an orthogonal fransforma-
tion x = yR., Thus,
(B.11) zAz' = yRAR'Y' = yAy’, RAR' = A or A = R'AR.

We cannot give the proof of this theorem here »” but we may remark on its geo-
metric significance. Any quadratic equation of the form zAz’ = 1 is the analytic
expression for a second-degree surface in n-space. The orthogonal transformation
z = y& may be regarded as having the effect of rotating the axes to which the
points z are referred to new positions, to which the points y are referred, and which
are coincident with the principal axes of the second-degree surface in question.

If 4 is positive semidefinite, we can define the diagonal matrix A} of which
each diagonal element is the nonnegative square root of the corresponding ele-
ment of A. Then, defining

(B.12) AR = @,
we obtain from the last equality in (B.11),

THEOREM 3: A posilive semidefinite malriz A can be represented by
B.13) A = R'A"MIR = Q'Q,

where the square matriz Q is real and is nonsingular if A is positive definite, stngular
if A is semidefinite but not definile.

An immediate consequence of Theorem 3 is

THEOREM 4: If A is positive definite and P is any matriz with the same number
of rows, then P and P'AP have the same rank.

To prove this theorem we use the fact that the rank of any matrix €' is the maxi-
mum number of linearly independent solutions of the equation Cxr = 0. Now any
solution z of Px = 0 obviously also solves P’APz = 0. Conversely, any solution
of PPAPz = 0 obviously also solves

(B.14) e P'APz = z'P'Q'QFz = (QPx) (QPx) = 0,
which is possible only if QP = 0, or, since @ iz nonsingular, if Pz = 0. Hence the
sets of solutions of Pz = 0 and P'APz = 0, respectively, are identical, and the

maximum number of linearly independent solutions z that ean be selected in each
ease 15 necessarily the same.®

°" See Birkhoff and MacLane [1941, Theorem 19, p. 249, and Theorem 32, p. 305].
* ‘This theorem and its converse are proved as Theorem I8 in Chapter IX, p- 249,
of Birkboff and MacLane [1941).
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We now prove a theorem which links moment matrices to the concepts of posi-
tive definiteness and semidefiniteness.

THEOREM 5: A moment matriz M is positive semidefinite, and is positive definile
1f and orly if the variables whose moments are included in it are not linearly dependent.

Proo¥: Using the definition of moments given in equation (5.54) we have
1 g .
(B.15) M=E P LE
The quadratic form
1 T
(B.18) MY = — T tr,z.8' 2 0
T =1

because, apart from the positive factor 1/7, it is the sum of the squares of the
vector products $xz, . This form cquals zero if and only if £2; = 0 for all L. This is
the case for some £ if and only if the clements of z arc linearly dependent. On the
other hand, if and only if £x; = 0 farall £ 0, we also have tME' > 0 for all £ = 0,
and hence M is positive definite.

The following theorem finds frequent application to moment matrices in the
sample or in the structure.

TuroreM 7: If the symmelric matriz

B ¢
(B.17) A =

¢ D
is posilive definile, then
{B.18) E=EB- CDW(

15 also positive definile,

Proor: Since zdz’ > 0 for all z = 0, we substitute z = ylI —CD!], where
a # ( whenever y # 0, to obtain

A
Y ¢’ D —DY v

= yBy' — yCD' Oy — yCD ' "y + yCD DD C'y*
=y{B — CD' ")y’ = yEy’ > 0.

(B.19)

Since this is true for any y # 0, E is positive definite.

If (B.17) represents the partitioning of a moment matrix according to two
subsets of the variables involved, then & is the moment matrix of the residusls
of the least-squares regressions of each variable of the first subset on all variables
of the second subget.
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Arrennix C

DERIVATION OF THE LIKELIHCOOD FUNCTION ASSOCIATED WITH
A SAMPLE IN THE MODEL &y

In this appendix we complete the derivation, begun in Section 5.4, of the joint
distribution of the observations (or, regarded as a function of the parameters,
the likelihood function associated with the sample) from the specification of the
general linear model &r , given in Section 1.3.

In Section 5.4 we reached the conclusion that, in terms of the parameters II,
Q@ of the reduced form, this function is

{C1}) Fr(y|z) = e-det™d7 Qoexp {—3T tr (I -0l —I]M)}.

In order to express this function in terms of the structural parameters A, T instead,
we must, as indieated in Section 5.7, insert for [I —II] and @ the expressions

i —n]=1 B'r|= BYB I'l= B-lA,
(C.2)
O = BTIZB"L
These expressions are based on relations (1.24) and (1.25), which in turn follow
immediately from the definition of the reduced form.
Since the determinant associated with a product of square matrices equals the
product of the determinants associated with the matrices,

(C.3) det 2 = det? (B~!)-det T = det~? B-det Z,
and hence
(C4) det T Q@ = | detT B | -det™iT X,

where the vertical bars denote taking the absolute value of the quantity appear-
ing between them.

The matrix produet under the trace sign becomes, by the rules for taking in-
verges and transposes of matrix products,”

(C.5) (B 1AY (B 1ZB-1)~K(B~1A)M = A'BIB'ZIBB-1AM = A’Z-1aM.
Using (C.4) and (C.5), the resulting expression for the likelihood function is
(C.6) Fr(yl2) = s | det™ B| -det=)T S-exp [~ 1T tr (S1AMAY)],

where we have used the identity (5.28) to interchange A’ and Z~!'AM under the
trace sign. The corresponding logarithmic likelihood function is

L(A, 2} = 1/T log Fr(y [ 2)

(C.7)
=, + log[det B| — $logdet T — % tr (Z'AMA"),

As might be expected, the form of L is preserved under any nonsingular linear
transformation of A with the corresponding transformation of Z,

AT = 14,
(C8) R
® = 1z

® See, for instance, Birkhoff and MacLane {1841, Chapter VIII, Sections 3
and 4].
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To check this, write (C.7) in terms of the parameters Ae, Ee, substitute the right-
hand members of (C.8) for these parameters, and show that the function so ob-
tained is identical with {C.7).

ArrENDIX D

DERIVATION OF THE EQUATION 2(A) = AMA’ IN THE PROCESS OF
STEPWISE MAXIMIZATION OF THE LIKELIHOOD FUNCTION (C.7)

In Appendix C the following logarithmic likelihood function was derived:
(D.1) L(A,Z) =xs+ log|det B| — §logdet T — }tr (Z1AMA").

We wish to find the value £{A) that maximizes this function for some given value
of Al lfwelet ¥ = Z-Vand U = AMA’, both ¥ and U will be symmetric matrices.
¥ is nonsingular and, because of specifieation (1.7), I is also nonsingular whenever
M is positive definite (see Appendix B), as we shall assume. (D.1) may now be
written

(D.2) L(A,Z) = L(A, ¥) = ¢ + log | det B | + $ log det ¥ — § tr (¥0).

Maximization of this expression with respect to ¥ gives the same result as maxi-
mizing (D.1) with respect to 2. If we differentiate (D.2) with respect to each ele-
ment ¢i; of ¥ (writing y*% = o;; for the element in the ¢th row and jth column
of ¥ E) we have,'®® taking into account the symmetry of ¥ and U,

L
(D3) if {3, = F( + i) ~ i + up) = 9T — wy = oy = wij

s
and
e . aL
D.4) if i=3j, v o — ui),
wherei,j =1, --- , G. If we now determine a value £(A) of = such that ol /a¢:; =
0{(i,j =1, -, @), we obtain from (DD.3) and (D.4)
(D.5) 2(A) = U = aM4A'.

As remarked already, this matrix meets the requirement that Z be restricted to
be positive definite. The proof that (D.5) indeed indicates a unique and absolute
maximum of L(A, Z) with respect to I is entirely analogous to that given by
Koopmans, Rubin, and Leipnik [1950, Section 3.1.9] for the case of maximization
with respect to Q.

If we substitute in {D.1) the maximizing value (D.5) for Z, we obtain as the
last term the constant —% tr {(AMA’)TAMA’} = —3T. Hence, if &7 = «s — 37,

(D6)  L(A) = L{A, £(A)} = xr + log | det B | — 1 log det (AMA").

This is the concentrated likelihood function from which maximum-likelihood
estimates A4 of A can be obtained by further maximization under identifying
restrictions.

1% See Koopmans, Rubin, and Leipnik [1950, Section 3.1.7] for a discusston of
the rules for differentiating certain functions of matrices,
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ArpENDIX E

THE CONCENTRATED LIKELIHOOD FUNCTION RELEVANT TO THE
ESTIMATION OF SUBSETS OF STRUCTURAL EQUATIONS BY THE
LIMITED-INFORMATION MAXIMUM-LIKELIHCOD METHOD

The derivation to be given in this appendix starts from the logarithmic likeli-
hood function (C.7) associated with the general linear model ©r , which we write
again here:

(B T{A, Z)=xet+logidetBj— §logdet = — }ir(Z71AMA").
Let A be partitioned as follows:

(E2) AE[A’]E[B’ Tr ]
An By Tu

where Ar is the &1 by @ + K matrix of the coefficients of subset 1, consisting of
the first 71 equations of the structure (i.e., the equations that we wish to esti-
mate), and A is the G by G + K matrix of the coefficients of subset II, the last
G equations of the structure, in which we are not interesied. Of course, G1 +
Gz = G. The corresponding partitioning of Z can be written

(E3) 5 = [21 1 Zin :|

Znt Zon

With reference to the description of stepwise maximization in Section 5.5. we
shall regard the parameters A, 21 1 as parameters ‘6" to be retained, and Ay ,
i = Zir11, i 1 as parameters “p’’ to be eliminated by partial maximiza-
tion. In doing so we do not attempt to use any overidentifying restrictions on
the matrix A1 of the second subset of equations. In fact, we have no interest in
the identification of these equations, and feel free to replace them by suitable
linesr combinations of themselves and to add to them linear combinations of
the equations of subset I, if that helps in carrying out the elimination of these
parameters. We shall therefore make use of the transformation (C.8) with a non-
singular matrix T.

In order for this transformation not to affect the equations of subset I, we
must choose T such that it partitions as follows:

I 0
(BE4) T= [ 1 ' ], Tir i1 nonsingular.
T Tamn

This gives to the submatrices of

(E.5) = [z; 1 T ]

21 o
as defined in (C.8), the forms
(E6) Zi1 = i1,
(E7 2u == STt + Zro T,
Ehtn = Tur P+ T Zrn Tho

(E8) , ,
4+ T ZurTirt < Trrax S Trro
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Since Z is positive definite,!” =,  is likewise positive definite, and hence non-
singular. We shall use our freedom of choice of Tz 1 80 as to make =1 11 = 0. This
means that we replace subset II by such linear combinations of all structural
equations that the disturbances of the new subset II°, say, are independent of
those of subset 1. According to (E.7), this is achieved by taking

{(E.9) Tiir=— 21 1 Zru Tn

for whatever choice of Ti1 17 we shall decide to mmake below. Substituting expres-
gion (E.9) for Tir 1 in (E.8) we obtain

(E.10} Eo o= T Zerar T,
where
(E.11} Epg=Znu— S 1 3

is again positive definite, because it is 2 moment matrix of the residuats of the
regressions of the components of uy; on those of u; , these regressions being taken

in the nonsingular normal distribution of all components of w = [w ] It
follows from Theorem 3 of Appendix I3 (with 'Zy,  for A and Tyy i for Q%) that
we can use our freedom of choice of Ty 1 50 15 to muke

(E.12) =T Boa T = fun.

In addition to making the disturbances ui; of I11* independent of those of I, we
have now also made them independent of each other and set the variance of each
equal to one. Since this has been possible without placing any restrictions on
Arr, 2111, of Zir 11, we have not used any overidentifying information regarding
the equations of 11.

As remarked at the end of Appendix C, the likelihood function (E.1) expressed
in the new parameters A", £* is of the same form as (E.1} itself. In writing it
down we now make use of the simplifications achieved by a special choice of T.
The matrix product under the trace in the likelihood function (E.1}, written in
terms of the new parameters Z° and

A
(E13) A= [ Z],
Aqr
becomes
=0 A . . - . .
(E14) [ P ’”] [ 1]M[A1 ATl = =i ArMAL + ATIMAT,
nr I Arr

and the new likelihood function takes the simplified form
(B.15) L(A® =% = xs + log | det B*| ~ 4 log det =
' — 3 tr (31 AMAD) — § tr (ALMAT).

Instead of determining explicitly'®? a maximizing value A5r(Aq) of ATy for given
P B

11 For a diseussion of positive deﬁmte matrices, see Appendix B.

202 Thig could not even be done without placing further restrictions on Att,
which is not identifiable as it stands because {(E.12) and hence (E.15) permit a
further orthogonal transformation Al = aan , Ad = 1.
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Ar and substituting the result in (E.15), we shall merely write the (necessary)
firat-order conditions

aL’
v =0 Gg=G+1,-,G k=1 ---, G+ K)

Doy

(E.16)

for a maximum of (I.15) with respect to ATi , and then eliminate AT1 from (E.15)
and (E.16) to obtain the same result.

Contributions to (E.16) come only from the second and fifth terms in the right-
hand member of (E.15). To evaluate the contribution of the second term, denote
by 8°-% the element in the ith column and the gth row of the inverse B *-1 of B".
Then!o?

0 s
(E17) Era log | det B™| =

The contribution of the fifth term is

— 3 —tr (AHMAH) = — AT M) — ‘(MAn)kg = — (A:IM)U-\'
(E.18) ﬂau

G=G+1,-, 6 k=1, G+K.
Hence the first-order conditions {E.16} can be written symbolically
aL"

(E19) —» = [(B")Yull O - ALM =0,
A1

where the numbers of rows and columns of the matrices [ and 0 can be inferred

from the other matrices in the equation.
The fifth term in (E.15) can be evaluated immediately from (E.19) by

(B.20)  ALMAY = ((B")Mull OBl Th) = {(B°) B = lun

and is found to be the constant G11 . To evaluate the second term in (E.15), we
partition the last term in (E.19),

(E21) ALIM =[BT Th [M’”’ M’”] )
M, M.

in order to write (E.19) in the form of the two conditions

(E.22y) {B* )t = BUMuy + Ti1 Mas,

(E.222) 0= BhM, + M.

We assume as before!™ that the matrix M, and hence M., , is nonsingular. Then
(E.222) implies

(E.23) ™ = —BuM,.M3,
which, if substituted into (E.22y), implies
(E.24) {(B* ) 'ju = BHW,

102 Bee Koopmans, Rubin, and Leipnik [1950, Section 3.1.7] for a discussion of
the rules for differentiating certain functions of matrices.
4 See Appendix D.
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where W is the nonsingular matrix defined by (5.38). Now, writing for the second

jerm!'® in (E.15)

(E.25) log | det B® | = 2 log det (B"WB®') — § log det W,

we can evaluate the first term on the right in (E.25) from (E.24) by

(E26) BWE" — [BIWB" ] _ I: BIWB® ] _ [B?WB?' BIWBIY ]
BuWB"™ {(B* ) juB"™ O 1 Iun |

go that, since Bl = Br,

(E.27) log det (B°WB"') = log det {(B;WB;).

Taking together (E.27), (E.25), (I1.20}, and (I5.15), the concentrated likelihood

funetion in terms of Ar and = is found to he!?s
(E.28) Li{Ar, T1:1) = xs + } log det (BWBy)
’ ~ 3logdel W — 3 log det Ty 1 — % tr (T’ AiMAL).

By further partial maximizalion with respect to T, , analogous to that carried
out in Appendix D, it ean be further coneentrated to the form

(E.20) L(A1) = ke + & log det (B{WB)) — 1 log det W — & log det (AMA7)

depending on Aj only.

AppEnDIX F

SOME PROPERTIES OF THE ROOTS OF det (Wi — IWsa) = 0

With respect to the matrix (Wis — IW,.) it was asserted in Section 6 that if
Was and Wi, are nonsingular and symmetric, and if Was is positive definite, then
p(Wia — (Was) = G2 — 1if Lis a single root of the equation

(F.1) det (Wis — IWa) = 0,

and p(Was — IWas) < G& — 11 [is a multiple root.
Since Waa is real, symmetric, and positive definite, there exists a real non-
singular matrix @ such that%?

(F.2) Wa = QQ'.
Defining further
(F.3) W =@ WuQ,

105 Using the proposition that, if A and B are square matrices of the same
order, det (AB) = (det A){(det B).

106 Since a unique expression (E.28) is obtained without inquiring into the
uniqueness of a solution of (E.16), it is not necessary to go inte second-order
conditions to determine whether a maximum, rather than another type of station-
ary point with respect to A® [, has been used—provided that we know that at
least one maximum exists and that the highest maximum is reached at a point
where (E.1) is differentiable. It has becr shown elsewhere [Koopmans, Rubin, and
Leipnik, 1950, Section 4.5.6] that this is indeed the case.

107 See Appendix B, Theorem 3.
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there exists a real orthogonal matrix R such that!®
(F.4) R'WR =V, RR =1,

where V is a diagonal matrix. Because of the nonsingularity of @ and R, (F.1) is
equivalent tol®*

(F.5) det [RIQ™1(Was — IWa)Q' IR} = det (V — U) = 0,

and also for any I the rank of (Wis — [Was) is the same as that of (V ~ iI). Since

V is diagonal, its diagonal elements are theroots I; (. =1, --- | @) of (F.1), and the

statement in the first sentence of this appendix follows directly. ’
With the help of the transformation used in (F.5) it is easy to show that the

smallest root [; is indeed the absolute minimum of the function (6.27), which we

write again here:

BaW a8

F.6 i =
(F6) i PRET

Since @ and R are nonsingular, the transformation
(F.7) Ba = (R'Q

establishes a one-to-one relationship between the wvector spaces of 8 and ¢.
Through this transformation the function (F.6) can be expressed in £ as follows:

- o I
’ im=1 M
(F8) o) =10 = 5 = T >,
' T i

since I; 3» UL for all 2. The lower bound [ is, indeed, attained if all elements of ¢
are zero except that corresponding to I . The transformed vector 84 correspond-
ing to this £ is a solution of the equation (6.33) defining the maximum-likelihood
estimate ba .

ApPENDIX G

DERIVATION OF THE TEST CRITERIA USED IN SECTION 8 FROM
THE LIKELIHOOD RATIO PRINCIPLE

We consider first the test on the set of restrictions
{G.1} a = {8y O0un ¥» Ors]

on the first equation in a moedel &1 , discussed in Section 8.1. In the concentrated
likelihood function

ﬂaW;aﬂﬁ)"|T

2 =
G2 Fr(fa) (mwuss

1% Appendix B, Theorem 2.

199 Because the multiplication of & matrix by a nonsingular matrix does not
change its rank. See MacDufiee [1943, Chapter II, especially Theorems 17 and 22
and Corollary 23).
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corresponding to {6.20), maximization has already been carried out with respect
to all parameters £ and all rows of A other than the first, without placing any
{overidentifying) restrictions on these parameters. Maximization has also been
carried out with respect to v subject to (G.1). The maximum of the likelihood
function over all structures of the model ©r satisfying the null hypothesis (G.1)
(to be tested) is therefore, in the light of Appendix F,

(G.3) max Fp(Bs) =1,

fa
Under the maintained hypothesis, no overidentifying restrictions at all are placed
on «. In that case, as shown in Section 6.4, 1, = 1, s0

(G4} max Fp(8s) = 1.
B ’

The likelihood ratio for testing the restrictions (G.1) is therefore the ratio El_”
of (G.3) to (G.4), and its logarithm is — 37 log I, .

Consider next the test, diseussed in Scetion (8.2), whether the restrictions
(G.1} produce identifiability of 1he first equation. In this case (G.1) represents
the maintained hypothesis, and ((i.3) the maximum of the likelihood function
under that hypothesis. As the null hypothesis (to be tested) we choose the hy-
pothesis of nonidentifiability of the first equation through the restrictions (G.1).
We can make this explicit by stipulating as the null hypothesis that the structure
contains two equations with a coefficient matrix of two rows,""

(G.5) Ar = [Bra Oraa Trox Or.ex].

Since B is specified to be nonsingular, this can only be true for a structure of the
model &g if

(G.6) p(Bra) = 2.

According to Section 6.3, the maximum of the likelihood function over all
structures of the model ©; satisfying the null hypothesis (G.5) is

min det A;MA; \ 717 . . \—tr
Theu=0 det Br.aWasBra
(G.7) max . ; = max | — 22472 .
By s min det AIMAI BI, . det B],AWAaBI,,;
r T'younrestr.)

To evaluate this quantity, let
{G.8) Bia = KR'Q, p(K) = 2,

where ¢ and R are defined by (F.2), (F.3}, and (F.4). Since @ and R are nonsingu-
lar, the maximization (G.2) with respect to Br.s gives the same result as maximiza-
tion with respect to K of

det KR'QCWLQ™RK\ ¥ _ fdet KVA'\ 73T
det KRG W Q' \RA’ B '

(G2 det KA’

Let R be so chosen that the diagonal matrix ¥ shows the roots [ of (F.5) in in-
creasing order,

(G.10) lgbhglg - < lpe

10 The symbols 05, ax and Oy, «» stand here for two-row matrices of (744 and
K** columns, respectively, all of their elements being zero.
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Writing

1 0 ku .- le‘i]

(G.11) K=K—[ )
0 1 ka -+ kygs

we seel!! that the value of (G.9) is independent of the nonsingular matrix K of
order 2, which we therefore take as K = I. Let X!’ denote summation over all
values i = 3, --- , G. Then the partial derivative of

I -+ 2_” l.‘kﬁi 2" Iikh'kzi

(G.12) det KVK' = det .
E‘” Likyiks: L+ Z70k%
with respect to any I; (j = 3, --- , G%) is

kf,-(lg + ?” Lks) + kN + ?" Lkl — 2kyske; Z bikviben
(G.13) . .
= bLky; + Lk + E‘,”Ii(klikzi — keibul > 0
because of (G.10). It follows that

L+ 1, ?" ki-‘ I 27 kyiks

(G14) det KVK' » det
Iy ?" bk b+ 127 Ky
If we define
(G.15) hn= 2" K, by = Z' ks ke = Z7 B3,

these quantities can be freely chosen subject to!12
{G.16) hu » 0, has > 0, huhas — Rie > 0.

Then, since

144
(G.17) det KK’ = det[ + fn s ]=1+h11+hﬂ+hllhﬁ-h!ﬂ>0r
has 1+ ke
we have
det KVK' Ly + Llher + bbby + Giknha — B
det KK’ I+ Ay + hw + hphey — A5
(G.18)

P4 (/e + (/LA + B/ ke — ki
: 1+ ke + b + (hpbe — A3 )

= ljl

11 Bee footnote 105. The possibility that (G.9) may be maximized by a matrix
K such that [Z:' i“] is singular is ruled out by the results of the analysis
1 22
below. -
122y /hn and v/ are the lengths of, and hia/+/Fihs is the cosine of the angle
formed by, the two vectors [k;, «+- k2] and [k, - - kygd]-
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In the fraction in the last member of (G.18), because of ((G.10), each of the non-
negative quantities 1, A1 , hee , and hyhes — ki has a {positive) coefficient in the
nurnerator which is at least as large as its (positive) cocfficient in the denominator.
It follows that the last-member of ((3.18) is minimized if hy; = hes = k1p = (. We
also note from ((G.15) that in that case the inequality sign in {G.14), and hence
also that in (G.18), becomes an equality sign. Therefore {G.9) is maximized by

(G.19) K=|:1 0 0 0],
010 .- 0

the maximum being

det KVK"\-7
il — — = {§ 1T,
(G:.20) m;m( ot R ) ()

The ratio of this maximum of the likclilwod function under the hypothesis to be
tested $0 the maximum (G.3) under the maintained hypothesis is 317, its log-
arithm —§ T log s .
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1. INTrRODUCTION

In Chapter VI a method was presented for obtaining maximum-
likelihood estimates of the coefficients of ‘a subsystem of a complete
linear system of stochastic equations.? This method was derived on the
assumption that the disturbances of the system have a joint normal
distribution with mean zero and are serially uncorrelated. (It was also
assumed that at a given time the disturbances are distributed inde-
pendently of all variables predetermined® at that time.) If a scientist
wishes to estimate the coefficients of the subsystem and/or the co-
variances of the estimates, either he must be sure on & priori grounds
or he must verify that the above assumptions are satisfied for his sys-
tem. This is sometimes difficult or impossible to do since the assump-
tions are rather stringent. The question then arises as to whether and
how relaxed conditions may be obtained so that the statistician, after
having verified that these conditions are satisfied for his system, may
blithely proceed with the computational method already developed and
still obtain “good” estimates. It is to be understood that any relaxation
in the conditions is an asset to the scientist. On the other hand, he may
find himself in the position where he has to pay for this asset by specify-
ing conditions which, while considerably weaker, are more complieated
to work with. Indeed, the conditions to be presented in this paper are
already a compromjse in that stili weaker ones do exist but they are
much more complex.

1 The authors wish to express their gratitude to Benjamin Lefkowitz for his
assistance in clarifying many of the problems they encountered.

* See, in particular, Sections 6.1 and 6.3 of Chapter VI. The subsystem can, of
course, be the complete system or even only one equation of a complete system.

! For a definition of predetermined variables and jointly dependent variables
see Chapter VI, Section 1.5.

200
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2. REvieEw oF THB ORIGINAL CasE

In this section we shall summarize the results given in Chapter VI
that relate to estimating (i) the coefficients of a linear system, (i) the
- covariance matrix of the estimates of these coefficients, and (iii) the
covariance matrix of the disturbances.
Suppose that we have a structure represented by a complete system
of stochastic equations,

(1) By + TI'z: = u'.

At time ¢ the elements of y, and #z, are variables presumed observable
without error, those of 3, being jointly dependent and those of z, being
predetermined. The elements of u, are nonobservable disturbances that
have a joint normal distribution with mean zero and an unknown non-
singular covariance matrix £, The elements of w, are distributed inde-
pendently of those of z,. The disturbances are serially independent,
that is, the disturbaneces at time £ are distributed independently of those
at time = {{ # 7). Since the system is complete, u, 1s a vector with as
many components as y,, and thus B is a square matrix that is assumed
to be nonsingular. We decompose u into two subvectors w = [g 7]
Then (1) may be written

(2a) Bly: + I‘Iz: = Gy,
(2b) Buy: 4+ Tnzi = ;.

-
Correspondingly, 2 is decomposed into I:E[ I “in ] Suppose that
Zur Zono

we are interested in estimating A; = [Br Til. We assume now that
the elements of Ar are subject to ceriain a priori known restrictions in
the form of polynomial equations which are sufficient for the identi-
fiability of Ar almost everywhere.*

As discussed in Chapter VI, Section 6.3, the maximum-likelihood
estimate of Ay is that value A of A; which, subject to the above re-
strictions, minimizes
@  det (AM A7)

B det (AIW::A;) ’

where £ = [y z] and where M = M., is the moment matrix of the
variables z formed according to

1 <
(4a) Mgy = T 2 ade,
t=1

1+ For a discussion of identifiability, see Chapter II of this volume and Koop-
mans, Rubin, and Leipnik {1950, Section 2], Wald [1950a], and Hurwicz [1950a].
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where a and b stand for z, y, 2z, or any other vector function of ¢ and
where®

(4b) Wee = M, — M::M-;:‘Mlz = [H(})'w g]!

so that, in particular,
(4c) Wy =M, — MIIPM:: -

Indeed, V™ is the reciprocal of the likelihood function except for a
constant factor.

An estimate of the covariance matrix of the maximum-likelihood
estimate Ay of A; may be obtained as follows. Since A; is subject to re-
strictions, the elements of Ay may be represented as functions of a
smaller number of unrestricted parameters. The maximum-likelihood
estimate of the covariance matrix of the estimates of the unrestricted
parameters is given by (1/T)(~ L)™', where — L is the expectation
of the matrix of second-order partial derivatives of % log V with re-
spect to the unrestricted parameters evaluated at the maximum-likeli-
hood estimates of these parameters.®

Finally, the maximum-likelihoed estimate of the covariance matrix
Z11 of the disturbances g, of the subsystem (2a) is given by A1 M. A .

Under the assumptions stated at the beginning of this section and
the additional assumption that M., approaches a nonsingular limit in
probability,” the estimates described above have been shown to be con-
sistent, asymptotically éfficient, and asymptotically normal almost
everywhere in the parameter space.’

If one were to calculate the estimates by using ¥V in (3) when these
assumptions are not valid, the estimates so obtained are no longer
maximuro-likelihood estimates but are what we shall call quasi-maxi-

¥ W, has meaning even if M ;! does not exist. W, is, in any case, the observed
covariance of the residuals from the least-squares regression of the components
of ¥, on those of z; .

§ See Chapter VI, Section 7. For computational convenience L is frequently re-
placed by the matrix of second-order partial derivatives without expectations
being taken. It can be shown that the estimate obtained by this replacement is,
everywhere in this chapter, consistent and efficient when the original estimate
has these properties.

"I X,, Xy, -, Xp, - i a sequence of chance variables, we say that
Xr— ¢ in probability if lim y_,, prob {| X — ¢| > ¢} = 0 for every ¢ > 0.
When we talk of M., approaching a nonsingular limit we must note (i) that each
element of M,. is a chance variable that depends on T and (ii) that each ele-
ment of M., must converge to the corresponding element of a nonsingular matrix.

® References to proofs are given in Chapter VI, Section 5.2, See Chapter VI,
Section 3, for definitions of consistency, asymptotic efliciency, and asymptotic
normality.
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mum-likelihood estimates. We shall investigate various conditions under
which quasi-maximum-likelihood estimates are consistent and/or asymp-
totically normal.

3. OMISSION OF VARIABLES

We assume that all of the conditions mentioned in Section 2 are valid
for the system except that the statistician does not have data on all of
the variables. Suppose that data are unavailable for some of the vari-
ables that are present in the complete system but not, in the subsystem
to be estimated. In other words, the a priori restrictions state that, in
the subsystem Byy; + I'z: = ¢, the coefficients of the unavailable
variables are all zero. Then the statistician may aet as though these
variables do not appear at all in the complete system. That is, he may
replace the system by a modified one obtained from the original by
assuming that throughout the complete system the coefficients of the
unavailable variables are all zero. If the subsystem is identifiable in
this modified system, the statistician may go through the motions of
obtaining maximum-likelihood estimates with respect to the new sys-
tem. For the original system, these estimates will be quasi-maximum-
likelihood estimates. The quasi-maximum-likelihood estimates of (i)
the coefficients, (ii) the covariances of the estimates of the coefficients,
and (iii) Zy y are all consistent almost everywhere.°

First we note that the likelihood expression does not actually involve
the jointly dependent variables that are not present in the subsystem.
Hence, the omission of these variables has no effect on the estimates.

When the missing data concern predetermined variables (which are,
of course, not present in the subsystem) there is a loss of efficiency." It
is this loss of efficiency that restrains the statistician from arbitrarily
ignoring all the predetermined variables (not in the subsystem) that can
be dropped without the loss of identifiability. On the other hand, in
large systems it is a great computational aid to be able to neglect some
of these variables."" It may be noted here that if the subsystem con-

? Bee Rubin [1948] for proof. For the case of a single equation a proof has been
given by Anderson and Rubin [1950].

19 The reader is referred to Chapter VIII for an evaluation of this loss of effi-
ciency in a simple model.

1 In problems in which there are few observations on the variables it has
been noted that the use of many predetermined variables may cause a loss of
estimability. The reason for this is that the denominator in (3} becomes zero
when there are too few observations compared with the number of coordinates of
z. In such cases the procedure of “forgetting'’ predetermined variables becomes
indispensable. At the same time, the need for a study of the allowances for ‘‘de-
grees of freedom lost’? in the estimation of Z, [, referred to in Chapter VI, foot-
note 58, becomes great.
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tains only one equation, and if this equation has G* jointly dependent
variables in it, then at least G* — I predetermined variables not in the
equation must be used for the purpose of identification. However, if our
subsystem contains more than one equation, it may well be that we do
not need (for identifiability} any of the predetermined variables that do
not occur in the subsystem. Thus it is often possible lo compute conststent
_estimates for a subsystem while very liltle is known about the rest of the
sysiem.

If the statistician has a choice of variables to neglect he should choose
the ones to neglect in such a way as to make W, as small as possible.
As thus stated, the above criterion is rather vague, for no method has
been mentioned of measuring the size of matrices. Suppose that A and
B are two symmeiric matrices, If yAy’ > yBy' for all vectors y, then
we can say that A is at least as large as B. (In general, such a compari-
son cannot be made since, for many pairs of matrices A and B, there are
two vectors g and ys such that 1.4y > 1By: and Ay < y.Bye.)

Every additional z used does decrease W, in the sense just indicated.
If there is a2 question of which of two z’s to use, and one z gives rise
to a smaller W,, than the other, then we should use that z. However,
one will often find that, asymptotically, if one z is used, certain param-
eters will be more efficiently estimated while other parameters will be
less efficiently estimated than would be the case if the other z were used.
It is well to note' that W,, represents the unexplained covariance of
the residuals from the least-squares regression

(5 ye = Tz, + v, .

Here II represents the matrix of coefficients of the regressions of each
element of ¥ on the elements of z. To reduce W,, it is desirable to use
those 2’s which help explain most- of the variance of the y’s in the above
regression.

1t has been stated that the jointly dependent variables that are not
present in the subsystem are not involved in the likelihood expression,
This fact helps to remove some of the difficulty in selecting appropriate
z’s by indicating certain elements of W, that are simultaneously un-
necessary for computations and not indicative of the efficiency of esti-
mation of the parameters involved,

4. ERRORS IN OBSERVATION

In this section we shall indicate how to treat some cases in which
the variables are subject to observational errors. (These errors will be

1t See footnote 5.
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assumed to be distributed independently of all variables of the system
and of each other.) We shall often distinguish between the latent vari-
able (exact values of the variable) and the virtual (observed) variable
(the latent variable plus the random error of observation). When a
variable is subject fo error, data will be available on the virtual variable
but not on the latent variable.

The general problem of estimation when all variables are subject o
errors of observation is quite complex.” There are, however, several cases
often arising in practice which may he appropriately treated here by
considering specific examples. Frequently one finds that, if the latent
variable is predetermined in the subsystem to be estimated, one should
act as though the latent variable were replaced by the virtual variable
and that this virtual variable should be treated as jointly dependent;
in other cases (predetermined variables not in the subsystem or jointly
dependent variables) the latent. variables may be replaced by the virtual
variables while the predetermined or jointly dependent character of
the variables should not be changed. Considerable use will be made of
the resulis of the preceding section.

Suppose, for example, that one were estimating the coefficients 8, and
vn of the first equation of the following system of two equations:™

(62) Bry + T2’ =y + Buye + 7u2r = ¢,
(6b) Buy + TnZ' = s + veze + vuts = 1.

If in the observation of z; there is a random error ¢ , which is nor-

mal with zero mean and independent of the predetermined variables,

then what we observe is the virtual variable ¥; = 2; + ¢ instead of z, .
Elaborating our original system we now have

(Ta) BIy* + Tz* = s + Buyr + yuys = ¢ + vue = ¢¥,
(7b) Bigy* + The* = [yz + ymze -mza] _ [r:l i

s — 21 €1

Our problem is equivalent to that of estimating the coefficients of the
first equation of this new system when the variable z; (a predetermined
variable not present in the subsystem) is unobserved. This new system
satisfies all the conditions of Section 2 except the observability of z .
We should note here that it was necessary to call the virtual variable
of z jointly dependent because this variable, y;, is correlated with ¢*.
The results mentioned in Section 3 give us consistency for the quasi-

2 A more complete discussion of shock-error models has been given by Ander-
son and Hurwicz [1947].
4 Subscripis ¢ are omitted when there is no ambiguity,
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maximume-likelihood estimates for (7a) obtained by ignoring the pres-
ence of z;. These estimates may be regarded as having been obtained
by applying the computational technique of Section 2 after replacing
in equation (6a) the latent predetermined variable z, by its virtual
variable y;, to be treated as jointly dependent. This procedure also
yields a consistent estimate of the covariance matrix of the estimates of
Bz and v, . However, the technique discussed in Section 2 of estimating
Zp 1 fails, For if this technique is applied, it will yield an estimate of
the variance of ¢* and not of ¢: In fact, Z1 1 is not identifiable under
the assumptions made.

The argument we have used applies just as long as the subsystem. (7a)
remains tdentifiable when the coefficient of 2z, in (7b) s replaced by zero.

A similar argument may be applied to the case of possible errors in
the jointly dependent variables in the subsystem to be estimated. The
case of errors in the jointly dependent variables not in the subsystem
is trivial since, as has been previously pointed out, observations on
these are not required for our estimates.

The remaining case of importance is that in which the predetermined
variables not appearing in the subsystem to be estimated are subject to
errors of cbservation. As a special case, suppose z; and z; in equations
{6) are such variables. The virtual variables are z; = z; + & and z; =
2 + & ; we.also let e = 2 and e = 2; . Elaborating our original system
{6) once more, we now have

r

(8a) BI*y*™ + "™ =y + Biye + yuys = ¢ + yue = ¢** ’

B}'}"y**' + I‘?I*z**' = [y: + Yoty + YuEs — YoEe — ‘72327]

Ys — 21
[
€1

Our problem is equivalent to that of estimating the coefficients of (8a)
when this system satisfies all the conditions of Section 2 except the ob-
servability of 2, , 2, and z; . Once more we apply the results of Section
3, which give us the consistency of the quasi-maximum-likelihood esti-
mates of (8a) obtained by ignoring the presence of 2, , %, and 2; . Again,
these estimates may be regarded as having been obtained by applying
the computational technique of Section 2 after replacing in equations
(6) the latent variables by their virtual variables. The virtual variables
for the predetermined latent variables should be considered jointly de-
pendent {(predetermined) when the latent variables are present {are not
present) in the original subsystem,

(8b)
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5. DisTriBUTION OF DISTURBANCES

The conditions on the disturbances noted in Section 2 are quite
strong and noti often satisfied. They require (i} that w, be distributed
independently of the predetermined variables, (it) that the distribution
of u, be the same for all ¢, (iit) that the distribution of %, be normal
with zero mean, (iv) that u, be distributed independentily of w, for
t # 1, and (v) that £ = &(u'm,) be nonsingular. In this seetion a set of
eight conditions will be examined with reference to the system (2).
These will then be used to relax the original condilions,

ConprtioN 1: There is @ nonsingular malric 2y 1 such thal®®
(9) M, — 2 in probability.
Condition 1 is, of course, much weuker than the specification that the
distribution of u, = [q, 7. be fixed for all £ and = be nonsingular. Here
all that is required is that the distribution of g, not fluctuate too wildly
with time.
Conprrion IL: There is a nonsingular mairiz N such thal
(10) M..—N in probability.
Apropos of the considerations of Section 3, we may note that this

specification is applied only to those predetermined variables that are
not omitied in the computation of quasi-maximum-likelihood estimates.

Conprrion I1I:
(11) M. —0 : in probability.
Given Conditions I and I, Condition III is weaker than the inde-
pendence required in Section 2. It applies only to ¢, (as distinguished

from u,). In conjunetion with Conditions I and 11 it states that the
sample correlation between z, and ¢, is “small” in large samples.

ConprTioN 1V: There 75 @ matriz M such that

(12) M, — M tn probability,
where
1 & ’
(133) M.. = —T Z 8:(95:)3:
Lmml

1t See {4a} for a definition of M, .
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and &,(z7) ts defined as the conditional expectalion of z given all (ob-
served and unobserved) variables predelermined at time {.

It should be noted that M., is a random variable. If Condition II
holds, Condition IV is no stronger than

Conpition 1Va: There is a malriz M, such that
(13b) M,. — M, in probability.

We derive this implication as follows: Partitioning M., according to
M.. = [M,. M,,], we note that &(z;) = z; and hence M,, = M,, . Fi-
nally, M,. — N in probability by Condition II. Hence the convergence
of M,. implies (together with Condition II) the convergence of M., .
Another alternative to Condition IV may be obtained as follows: As-
suming that Condition II applies to all predetermined variables in the
complete system, we premultiply equations (2) by B, obtaining

(14a) y: = —B'TZ; + B,

and thus
T

(14b) M,, = —B7'TM,, + B [I— > s,(u',)z,],
f==1

and, after taking the limit in probability, we see that Condition IVa is
equivalent to

Conprrion IVb: There is a matriz M, such that

r
L 2 8(udz — M, in probability.

(14¢c) T 2=

Condition IVb then would certainly be satisfied if &,(x;) = 0. Hence,
Condition 1V would be satisfied if Coundition II held (where z is inter-
preted as the vector of all predetermined variables in the complete sys-
tem). It would also be satisfied in less restrictive cases, and use can be
made of any of the three forms depending upon convenience in the
problem at hand.

ConNprTION V!
(15a) Moy~ M, —0 in probability.

This condition can similarly be considered in alternative forms:

ConpITION Va:
(15]!)) Myz - My: — 0 in pfobdb’l:lﬁy.
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ConDiTiON Vb:

T
(15¢) 5,1,—, > [ui ~ s;(u’g)] 2 —0 in probability.
$uxl
Conditions IV and V represent rather mild restrictions on the be-
havior of u; and 2, .
Let us call M* an admissible matrix if there is at least one matrix A,
subject to the a priori restrictions on Ay such that A;M* = 0.

Conpirion VI: The equation A1M* = 0 (where Ay is subject lo the re-
strictions on Ay) defines Ay as a single valued, differentiable function of
M* on the admissible matrices in some neighborhood of M.

Condition VI is introduced to insure identifiability and consistency.
We indicate here only how identifiability is established. Since

T

1 ’ 1 d 4
Myp= 22 qizi= ;5 2 Ao = A M.,
T = 1

(16) M. — AM = A/(M.. — M,.) + Al(M.. — M).

By Condition V, M., — M. — 0 in probability; by Condition IV,
M.. — M — 0 in probability; and by Condition I1I, M, — 0 in prob-
ability. Hence A/M = 0. Since the solution of A;M = ¢ (subject to the
restrictions on A;) is unique, we can assert that A; is identifiable if Con-
ditions 111, IV, V, and VI are satisfied.

The condition in Section 2 that corresponds to Condition VI is the
one imposing polynomial restrictions on A; that are sufficient for iden-
tifiability. '

At this point we add the remark that the condition in Section 2 im-
posing nonsingularity of £ has been relaxed to imposing merely the
nonsingularity of Z;; (see Condition I). Thus it is possible for some
equations not in the subsystem (2a) to be identities. Hence, if the vari-
ables 1 , ¥», and ¥ = ¥ 4 ¥, oceur in the subsystem, the obvious func-
tional relationship between them may be disregarded: 4 — 3 — y= = 0
is considered an equation nef in the subsystem with disturbance iden-
tically zero. Then Z is singular but, by the above-mentioned relaxation,
this fact leads to no difficulty. The privilege of disregarding this rela-
tionship is computationally advantageous when the coefficients of the
subsystem are subject to linear restrictions.®

Under Conditions I, IT, T¥, TV, V, and VI the quasi-maximum-likeli-
hood estimates of A; and Z; ; are consistent."”

16 See Chapter X.
** See Rubin [1948, Section 5).
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Conprrion VII: The elements of \/TM,, are asymptotically normally
destribuled.

In view of the central limit theorem,' this condition constitutes a
relatively weak restriction on ¢ and 2.

ConoirioN VIII: If Nujn represents the asymplotic covariance of"
\/qu.sk with '\/qu,sn y then N g 5 — Mgiq; Moz, — 0 in probability for
all i, 7, k, and n.

If Conditions 1 to VII are satisfied, then the quasi-maximum-likeli-
hood estimates of A; are asymptotically normally distributed.”™ If Con-
dition VIII is also satisfied, then the quasi-maximum-likelihood esti-
mates of the unrestricted parameters of A, are asymptotically normally
distributed with a covariance matrix that is consistently estimated” by

W/T(~L)™

6. NonLinEar Equatrons

We shall indicate how a large class of systems of nonlinear equations
may be treated as though they were systems of linear equations, this
treatment yielding guasi-maximum-likelihood estimates that are eon-
sistent under suitable hypotheses. We shall state a general result and
then illustrate by a special example how this result may be applied.

We assume the existence of a serially independent set of vector ran-

dom variables ---, %, %, , -+, which will be called basic disturb-
ances, and an exogenous”™ vector variable z and a set of vector relations,
{17a) Ye = felue, wea, ---, 2),

(17b) ' z2e = gete, Uen, -+, 3),

(17¢) g = heug, wpy, -+, 3),

such that

(18) A, = By, + Tt = q;.

13 See Cramér [1937].

* The symbo! m,;., denotes the element in the ith row and kth column of
M. , ete.

* The proof is an extension of one used by Anderson and Rubin [1950).

*1 It should be emphagized here that L is computed from ¥ in the same way as
in Section 2,

* An exogenous variable ig a variable distributed independently of the basic
disturbances.
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We assume that y. and z; are observable so that the gquasi-maximum-
ltkelthood estimation of Ax tn (18) may be carried oul. We need not as-
sume any knowledge about the nature of f,, g, and h; as long as Con-
ditions I, II, T1I, IV, V, and VI are known or assumed to he satisfied.
Then the quasi-maximum-likelihood estimates are consistent cstimates
of A; and 211 .2 If Condition VII is also satisfied, these estimates of Ay
are asymptotically normal and, if Condition VII1 is satisfied, the co-
variance matrix of the unrestricted parameters is consistently estimated™
by (1/T)(—LD)7.

Ezxample: We wish to estimate the paramecters a, 8, v, 8, ¢, ¢ of the
following system of equations:

(19a) To + aZafe + BFas + v = Ualeaa,
{19b) T + e + €n + § = nepaie,
{19¢) o, Ta, Jo, Tz, Za, Ua, e, te) = 0,

where ug , %, Ua, %u, and uy ave the serially independent basie dis-
turbances and %, , Z» are exogenous variables. It is assumed that §,,
Y, ¥, Za , and 2 are observed variables. It is given that the function
k is such that the equations (19) can be solved for §,, §eu, and §,; as
functions of the other variables and parameters in these equations,
that is,

fei = Feilfemtn, Femre, Fora, Un, Un, -, Us, Zn, Zm)
(i=1,2 3;alli).

Equation (20) is the analogue of the familiar reduced form. As it the
case of the reduced form, it is frequently possible to apply equation (20)
fort¢ — 1,¢ — 2, -+ - to obtain

(20)

Foi = feltta, -+, Wes, Uran, *=* 5 B, Ze2, Becray =)
(t=1,2,3;all ).

At this point we remark that equations (19a) and (19b) would be
linear if Zudiee , Fuffes , UaFemrn , a0d upinin were replaced by “simpler”
variables. In effect, we shall perform exactly this replacement by suit-
ably defining vectors x, = |y. =z and ¢;. Let

(21)

(22a) z2=1[-- Z.s %2 2a Z2a ---}
(22b) = [ug Un Us U Us),

23 Bee Rubin {1948].
# Bge Cramér {1937].



212 H. CHERNOFF AND H. RUBIN [cHAP. VII

(22¢) Ye= o Ja Ts Zabe Fuial,
(22d) 2o = Weun Gear Foas 2a 2o 2aZa 1),
(22¢) g = [uﬂgz—l.i UnZnZel.

From equation (21) it is evident that y,, 2., and ¢, satisfy relations of
the type (17a), (17b), and (17¢). Substituting in equations (19a) and
(19b) we see that a vector equation of the form (18) is obtained. In this
equation the elements of Ay are subject to restrictions which in this case
happen to be linear. It is now possible te compute quasi-maximum-
likelihood estimates of the unrestricted parameters a, 8, v, 8, ¢, {, of Ag .
If enough information is available concerning the variables u,; , z;; and
the relationship (19¢), it may be possible to disecover which of the Con-
ditions I to VIII are satisfied, and thus to check whether our estimates
are consistent and/or asymptotically normal.

In our selection of ¥, and 2, [see equations (22¢) and (22d)] there was
a certain amount of arbitrariness. It would have been possible to find
other vectors y, and z; that would have fulfilled the requirements neces-
sary to obtain (18). For example, the element %, might have been
omitted from y, . As was noted in Section 3, this omission would not
have affected our estimates. Also, we might have chosen other elements
to be included in 2, . [In fact, the only elements of z, that had to be in-
ciuded were 1, §,s,2 ,.and 2., for they are the only predetermined terms
appearing in equations {19a) and {19b) with coefficients not known to
be zero.] The remarks in Section 3 concerning the effects on asymptotic
efficiency of the omission or inclusion of certain 2’s are applicable here.
Hence, if there were a large number of observations, it would be profit-
able to expand z, so that z, would contain elements such as 3%, , 4511,
Yi-11Ye1,2 , €tC.

An additional remark appropriate here is that Conditions I to VIIT
are frequently more readily satisfied when an element is withdrawn from
z and Inserted in y, , provided that identifiability is not thereby lost.
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1. INTRODUCTION

In Section 3 of the preceding chapter conditions were stated under
which consistent estimates of coefficients of o subsystem of equations
in a complete system can be obtuined. In particular, as long as the
identifiability of the subsystem is preserved, we can obtain consistent
estimates of coefficients in the subsystem by the method of maximum
likelihood even if we ignore the presence in the rest of the system of
one or more predetermined variables known to be absent from the sub-
system. This procedure, in effect, ignores certain of the overidentifying
restrictions on the coefficients being estimated. The consistency of esti-
mates so obtained is an important practical result: the use of overiden-
tifying restrictions makes computation costly, and frequently time series
for all of the predetermined variables excluded from the subsystem are
not available. However, these estimates cannot in general be as efficient,
at least in large samples, as estimates that make use of all valid iden-
tifying restrictions. Therefore, it is important that the statistician know
the effect on the efficiency of estimates when he reduces the amount of
information used.

Unfortunately for these purposes, the exact sampling distribution of
estimates of coefficients in multiequation systems is unknown. Since
their asymptotic behavior is known, knowledge of their asymptotie prop-
erties will furnish some guidance in the case of estimates obtained from
large samples.

The problem then is that set forth in Section 3 of the preceding chap-
ter. There it was suggested that if predetermined variables must be ig-
nored and if there is a choice as to which of these variables is ignored,
then, in the interest of the efficiency of the estimates, the choice should
lead to the “smallest” W,,. The purpose of the present chapter is to
justify this remark for one simple model by study of the relative asymp-
totic variances of two different estimates of a coefficient.

213
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2. Ture MobDEL
Let
(1a) Yie -+ By + & = u,
(1b) Yoo + 1z + 2+ 8 =14

be a complete system of two stochastic equations, where 4, and r; have
a nonsingular bivariate normal distribution, independent of time ¢ and
of the predetermined variables z;, and z;, and where they have zero
means and covariance matrix Z. 1t is further assumed that

(2) ' [82;:2,‘(] = [}L,'j] =M (Z,J = 1, 2).

In what follows we shall treat z;; and z;; as random variables, with a
distribution independent of {, independent also for different values of ¢,
and possessing finite first- and second-order moments. The reader will

have no difficulty in rephrasing the reasoning in a form suited to the
assumption that z;; and z;; are given time series.

3. AsyMprOoTIC PROPERTIES OF ALTERNATIVE
EstiMATES OF 8

Suppose that we are interested only in an estimate of the coefficient 8.
It will be observed that the model specifies two restrictions on equation
(1a), namely, that the coefficients of both z;, and z,, are restricted to zero.
From the latter restrictions it is possible to derive explicit restrictions
on § so that the identifiability of that coefficient is clear. If we take
expectations on both sides of (la), we see that the constant term &
satisfies

3 & = —8ye — P8y .

If we denote by z; the deviation of a random variable z;, from its ex-
pected value, then, in view of (3}, equation (1a) may be rewritten as

(4) Ve + B2 = Uy .

Multiplying both sides of (4) through by Z,; and taking expectations,
we obtain

(5) ay“z.lt + ﬁsy.ztz.u = 01
and, similarly, we may obtain
(6) EGuta + BEGuzae = 0.

The restrictions (5) and (6) immediately suggest a very simple pro-
cedure for estimating f: in place of the population moments &2,
81124211 , ete., substitute sample moments in either (5} or (6) and solve
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for 3. In fact, either estimate will be obtained by the method of maxi-
mum likelihood if use is made only of the presence of the corresponding
variable z; in equation (1b). However, in finite samples an estimate
obtained from one of the two equations (5) and (6) (with sample moments
substituted for population moments) will rarely satisfy the other equa-
tion. The estimate of 3 is overdetermined, so to speak, when overiden-
tifying restrictions are present. Essentially, this is the .reason why the
method of mazimum likelihood yields estimates that are more difficult
to compute when overidentifying restrictions are employed.

To study the effect of ignoring predetermined variables on the asymp-
totic efficiency of estimates, we shall compare the estimate obtained by
the method of maximum likeithood when one of the predetermined vari-
ables, say z:, is ignored with another estimate obtained by the same
method but making use of both predetermined variables. Let these esti-
mates be denoted by b and b, respectively. To simplify this task we
shall derive these estimates through the minimization of variance ratios
depending on the single parameter 8. These variance ratios have them-
selves been obtained' by maximizing the corresponding likelihood func-
tions with respect to the other parameters, vi , vz, 6;, 82, and Z, asso-
ciated with the model (1). The “likelihood function’ from which we de-
rive the estimate b’ is obtained from the likelihood function associated
with the model (1) by arbitrarily (and, in general, incorrectly) specifying
v: = 0.

Lot

1 T
(M) My = 7 2 Ptrs
. =1
where p; and g, are any row vectors, and let

1 T
(8) Fi= o 2 Ta,
T =

where z;, is any of the variables ¥y, z4. We define the row vectors with
two elements each,

© w=lu—0 -7l 2o = o — 21 7 — B,
(10) g=11 8l ¥y =hn

an b= bl B =1 b,

and the “vector” with one element

(12} 2t = [z — 2.

1 The procedure for doing this has been indicated in some detail in Bections
6.1 and 6.2 of Chapter VI.



216 8. G. ALLEN, JR. [caAr. Vi

Then b is obtained by minimizing
BME' _ mu + 2miB + mmf’

(13) V=2 o 7
BW3 wn 2wl -+ web

where

(14) M=M,, W=M,— M.M. .M,

and where a,; denotes the jth element in the éth row of a matrix A.
The quantity V"', multiplied by a constant, is the concentrated like-
lihood function® in terms of 8. Since b maximizes the likelihood function,
it is consistent.’

The estimate b' is obtained by minimizing

(15) vt = BMB _ mu + 2maB + maf”
S OBWE T wi, + 2ul8 + w87

where
(16) Wh=M— MaM}iMy,.

Now, in general, b' does not maximize the concentrated likelihood func-
tion' of 8. Nevertheless, it is consistent. The computed value of this
estimate is

(e — Gz — 21

5>
a) y- - T
7 Zl {y2e — §o) ey — 71)

which, as T — e, converges in probability to the value of 8 specified
in restriction (5)," i.e.,

ay.lfz.lt
(18) B = — .
By
Since b is a consistent estimate, its asymptotic variance is zero. How-
ever, we know that /T(b — 8) is asymptotically normal® with mean
zerc and variance

(19) plim 786 — 8)* = —L7%,
T=rto

* See Chapter VI, Section 6.2, and Chapter VII, Section 2.

3 Bee Chapter VI, Section 5.2.

1 For a special ease in which bl is a maximum-likelihood estimate, see footnote
10 below,

¢ We make use here and in the remainder of this chapter of an important the-
orem on the probability limits of rational functions of random variables. See
Cramér {1946, p. 255].

¢ See Chapter VI, Section 7.
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where

e "3 log V)

(20) L= da?

With the knowledge of (19) and an analogous expression referring to
v T(b' — B), we can discuss the efficiency of b and bt for large T.
L itself is not easily evaluated, but a consistent estimate of L is’

(3 log V)

21 L=-22"2"71

(21) 5 s

It follows that

{22) plim T&(d — B)* = plim — L
T —sc0 T —rad

To evaluate the right-hand member we remark that, since b minimizes
{13), the expression

(23) d(% log V) - Mye + M _ U + waf
dg Mgy swg
vanishes for 8 = b. Hence the second derivative,
d(log V) _
gt

(29)

- (m;z + ‘mnﬁ)2+ Mo + (w12+ wa\  um
BME M3 swg swg'"’

when evaluated at § = b, reduces to

d'(} log V) _ Ma Wag
(@5) e W 57 Y

Thus we may write (22) as

-1
. 7 Was
(26) ;;1_1‘13: Teb — )Y = phm (b 1% bW-—b—,> .

Since formula (19) remains valid if b and L are replaced by &' and L,
respectively * we obtain tn w similar manner

@7) lim Ts®' — 8 = pli ( c wly Y
i = B =l nn T )

For an evaluation of (26) and (27) we shall make use of some of the

* See Chapter VII, Section 2, especially footnote 6.
¢ Lt is defined in terms of Vf analogously to (20). The statement made in the
text follows from Chapter V1I, last sentence of Section §.
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asymptotic properties of the various statistics involved in these expres-
sions. We first observe that

(28) plim me = var (yu),
T—rety

which by (1b} is

(29) var (ys:) = o, 4+ yYMY'.

Secondly, we recall from Chapter VI, Section 6.2, “that EAW:AB; is
the ‘sample’ variance, for given 84 , of the residual in a regression of the
composite variable §,; on 24 ; (i.e., on the predetermined variables whose
coefficients in the equation being estimated are not specified to be zero).”
In our model, 8 assumes the role of 34, 8y: that of . . Furthermore,
the only variable in 24, (in the sense of the foregoing quotation) appear-
ing in equation (1a) is identically equal to one. This means that W2, in
the present case degenerates to the matrix M given in (14), 2 matrix of
moments in the form appearing in (5.49) of Chapter V1, Section 5.6.
Qur model has specified that 8y: (= u.) is independent of predetermined
variables and that the variance of 8y} is ¢, . Henee, BM#' is, for given
B8, a consistent estimate of this variance. And since both b and b' are
consistent, it follows that
(30) plim MY = plim y'MbY = plim BMB' = oux-

T—m f—m T =sc0

Elsewhere it has been shown® that W is a consistent estimate of the
covariance matrix of disturbances in the reduced form of (1a) and (ib),
Le., of

b o
31 ¢ = .
0 1 Fur Orr B 1

W', however, is not a consistent estimate of Q. In particular, consider
w}s as the estimate of the variance of the residual in a regression of Ya
on z; . This variance must be larger than o, if v # 0 and z, and 2, are
not perfectly correlated. In the terminology of linear regression theory,
part of the “explainable” variation of % due to the variation of z is
included in the *‘unexplainable” or residual variation when we ignore
22 . To be more precise, the residual from the linear regression of z; on
21, taken in the joint distribution of z; and 2: , is defined as

(32) 8 = Zy — pV/ #22/ M1 Zie,

where p is the coeflicient of correlation of 2, and 2, . Furthermore, if we
define

(33) =1~ a8y,
? See Chapter VI, Section 5.4.
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(34) 7 =7 + Y20 um/un s

then W' is a consisient estimate of the covariance matrix of disturb-
ances in the reduced form of the system,"

(353) e + By = Uy,
(35b) Yo + ’YIéu = 7': r

derived from (la), (Ib) in the manner indicated by (4). The distribu-
tional assumptions of Section 2 imply that '

(36) U, = Ersy = Q.

Therefore, the covariance matrix of the reduced form of (35a) and
(35b) is

1 8" [ow ouJ[1 OT
(37) ot = e ,

01 Tur  Optyt }8 1
where

(38) Felrt = O + 'Yl‘io‘u = Opr + 7%#2‘2(1 —_ Pz)-

From the expressions for € and @' and from the consistency properties
of b, ', W, and W', we conclude that

(39) gl_ig bWY = 808" = oy,
(40) plim 'Y = £2'8’ = ouu,
(41) 1")'1_1.13 We = g,

(42) plim wh = o + Yaun(l — p°).

In particular, we note from (42) that w1y is a positively biased estimate
of ou.

Finally, with the substitutions available from (28)—(30) and (39)-(42),
we may rewrite (26) as

. 2 _
(43) ) BET Te(b »6) = IMI’

Tun

1 T,, Hurwicz has pointed out that if, in addition to the other assumptions
made, zi¢ and zy, have a bivariate normal distribution, 4! is in faet a maximum-
likelihood estimate. For then all assumptions muade with respect to the random
variables u,; and r; apply to w, and r}, and therefore the likelihood function may
be written in the form (V")‘”’Z-cunstunt. If the variables z; are not so distrib-
uted, then ¥t need bear no relation to the likelihood function of 8. For this rea-
son we have been careful not to call 4! a maximum-likelihood estimate but rather
an estimate obtained by the method of maximum likelihood,
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and (27) as

44 lim T&(d! — g)° = :

(44) plim T8’ — #) My’ — Yaum(l — o)

For large T the right-hand members of (43) and (44), multiplied by 1/T,

give approximations to the sampling variances of b and b', respectively.
Since the probability limit of 7 times the sampling variance, shown

for the estimate b in (43), is smaller than the corresponding limit for

any alternative (asymptotically normal) estimate (i.e., since b is asymp-

totically efficient), we conclude that as T —» « the efficiency! e(b) of b

tends to one and the efficiency of b' tends to the limit

(45) eolbl) = 2= / S

Tyu

MY/ My — Yien(l — 5%
This expression simplifies to
z
(46) eo(bf) =1 — ‘M .

MY’

If we define b'! as the estimate obtained when the variable 2 instead -
of 2; is ignored, then, analogously to (46), we have

(47) (bﬁ) =1 = 73#11(1 - Pz)
o= TTaMy

In linear regression terminology, the asymptotic efficiency of b' (of
b'™) is the ratio of the variance of y. “explained” by the regression of
that variable on z, (on z;) alone to the variance of y» “explained” by
the regression on both z; and 2, . Clearly, such a ratio must always be
less than or equal to one. And it is evident from (46) and (47) that the
efficiency of b' (of 5™} is a decreasing function of the bias in wi; (in
wil , the analogue of w! in computing b'") as an estimate of o, .
‘Therefore, if either w}, is smaller than wi} , or wil is smaller than w}, s
our choice between computing ' and b" is indicated. For, in this
event, the likelihood is greater that the smaller statistic has the smaller
bias (relative, say, to the total explained variance of y,).

Intuitively we should expect that little harm results from ignoring a,
predetermined variable if its “explaining value” in the equation system
is small. The terms vipm,/YMy' and viu»/yMy' might be thought of as
indications of the explaining value of 2z, and 2;, respectively. On the
other hand, we should not expeet an estimate based on the inclusion of
two highly correlated predetermined variables to be significantly more
efficient than one that ignores one of them. Expressions (46) and (47)
show that all the estimates considered differ little in their asymptotic
efficiency if the correlation coefficient of 2 and z; is almost equal to one
in absolute value.

11 As defined by Cramér [1946, p. 489].
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SOURCES AND SIZE OF LEAST-SQUARES BIAS
IN A TWO-EQUATION MODEL

By Jean BRONFENBRENNER

The method of least squares has been widely used for the estimation
of economie relationships, and it is thereforc of some interest to in-
vestigate the properties of least-squares estimates in this application.
The properties depend, of course, on the nature of the model defining
the relationships to be estimated.

It is frequently useful in cconomic analysis to postulate stochastic
relations, in which a random disturbance is inserted to indicate that
the associated undisturbed relation is satisfied, not exactly, but to a
given degree of approximation with a given probability. More spe-
cifically, we may wish to consider a mode! in which the current values
of a number of economic variables (hereafter called endogenous vari-
ables) are simultaneously determined by a system of stochastic rela-
tions.! The current values of these endogenous variables will be referred
to as jointly dependent variables.? In a model of this sort the assump-
tions under which least-squares procedures are known to yield asymp-
totically unbiased estimates are not fulfilled. Haavelmo [1943], Koop-
mans [1945], and others have shown that, in fact, large-sample bias will
ordinarily result if such procedures are used under these circumstances.

The purpese of this paper is to examine, for a simple two-equation
linear model, the sources and the magnitude of the bias in least-squares
estimates noted by Haavelmo. A more general linear model is briefly
discussed in the appendix to this chapter. Tt should be emphasized that
we are concerned here with the properties of least-squares estimates for
very large or, to be precise, infinite samples. The bias under discussion
is asymptotic bias—i.e., the difference between the parameters and
the probability limits® of the estimates in question as the sample be-
comes infinitely large.

Suppose that the parameters of the following equation,

(1) n+ Buy: + o+ = w,
are to be estimated from the observed points (yu, ¥e, 210

1 A detailed deseription of a linear version of such a model is given in Chapter
VI, Bection 1.3.

* For further discussion of this distinction, see Chapter VI, Section 1.5.

# For the definitions of probability limit and asymptotic bias, see Chapter VI,
Section 3.

221
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{t=1,2,3, --); and suppose that y; and y. are also constrained by a
second relation,

2) Bayh + Y2 4 vo2e + & = Uz

The variables 41 , %2 , 21 , and 2; are observable, while »; and u; are non-
observable random disturbances. Throughout this chapter the variables
denoted by the letter y are assumed to be endogenous. The variables
denoted by z, which will be called exogenous, are assumed to be deter-
mined outside of the system of equations under consideration. Thus
they influence, but are not influenced by, the endogenous variables.
They may be either random variables or fixed functions of time. For
the purposes of this chapter we need merely assume that they are deter-
mined independently of the disturbances, u; , that their second moments
approach either a finite limit or a finite probability limit as the sample
size inereases indefinitely, and that the matrix of these moments is non-
singular in the limit. The random disturbances u; represent, not errors
in measurement, from which we abstract here, but the aggregate effect
of many omitted variables, each exercising small influence. The models
with which we deal are therefore pure “shock’ models. It is further
assumed that u; and us have a joint normal distribution, which is con-
stant over time and independent of the exogenous variables, and that
they have expected values equal to zero, variances equal to o; and o7 ,
respectively, and covariance equal to oz .

We note that, in the model consisting of equations (1) and (2}, almost
all structures meet the conditions for identifiability;' consistent and
asymptotically unbiased estimation® of the parameters of these equations
is therefore possible.

For concreteness, let (1) and (2) be supply and demand relations for
an individual commodity, with ¥ the quantity of the commeodity, ¥, its
price, z; the wage rate in the industry producing the commeodity, and
2z income,

We may think of the plane

(3) o+ B+ + =0

as representing the “true” or “undisturbed” relationship that would
exist between 4 , 2 , and 2, if we could abstract from the disturbance u, .7

+See Chapter II. Only if v1 = 0 orv; = ( would equation (1) or (2), respec-
tively, lose identifiability.

5 For definitions of consistency and asymptotic unbiasedness, see Chapter VI,
Section 3.

* This requires some possibly unrealistic assumptions about the exogenous
character of income and the wage rate.

7 Since we are dealing with a linear relationship, (3) may also be thought of as
a relationship between expected values and, in this sense, an “average” relation-
ship.
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Furthermore, each observed point (y1,, ¥, 21,) may be considered as
an approximation to some “true” point (#i;, Fe:, 21¢) on the plane (3).
By the “true point” we shall mean the point which would be observed
if ), and u,, in (1) and (2) were both equal to zero, given the cbserved
values of 21, and 2z, . The reason for assigning the same values to 25, and
25 in this definition of the “true point” as these variables have in the
“observed point™ is that, under our assumptions, 2; and z; are deter-
mined in some way entirely independent of u, and u;. We may now
say that the observed point (yi, y2, 21} is a composite of three things:
the “4rue” point, the effect of w,, , and the effect of wu., .

We wish to examine in particular the effect of ., which must, of
course, be distributed among the several coordinates of the observed
point in a manner compatible with (1). When the values of the variables
and the disturbance at a particular time ¢ are substituted in (1), the
term vz, on the left-hand side remains exactly what it would have been
if the coordinates of the “true” point had been substituted, and the
whole effect of the disturbance wu;, must be distributed among the other
terms, reflecting itself in deviations from the values these terms would
have had for w1, = wus = 0. This is equivalent to saying that if repeated
samples could be taken for each ¢ (each involving a different drawing wuy,),
then ¥y, and y», would absorb all of the sampling fluctuation in u,, 2

Except under very special circumstances, we are now prohibited from
assuming that y,, like 2z, , remains unaffected by sampling fluctuations
in u; . More precisely, we are prohibited from assuming that in repeated
samples, with different drawings of u,, , both z,;, and ¥y, would be inde-
pendent of wy, , while 3, absorbed the full effect of the sampling fluctua-
tions in uy, . For y, and y, are constrained by relation (2) as well as rela-
tion (1); and, for any particular z,, different values of #, (reflecting
different values of w,) would require correspondingly different values of
Y2 in order that (2) might be satisfied. An exception to this could occur
only in the unlikely case of a singular distribution of u; and u, such that
up = By, With the result that u, is required always to move in such a
way as to cancel out the changes in ¥; due to variation in %, .

Thus, in general, the effect of sampling fluctuation in %, is not confined
to either i or y» but must be present in both of these variables. The
failure of the fth observed point to lie on the plane (3) is due to devia-
tions of both y,, and y., from the values %, and 7, they would have had
for e = up, = 0. In view of this, we could hardly expect to obtain an
unbiased estimate of (3)—even from an infinite sample—by minimizing

* It is, of course, impossible to draw repeated samples when the observations
consist of historical time series; but the concept of such samples is used in as-
sessing the probable accuracy of estimates derived from one sample. See also
Chapter VI, Section 3, first paragraph.
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the sum-square residual in the y,-direction while disregarding the size of
the residuals in the yo-direction. We would, of course, do no better by
minimizing residuals in the ys-direction. This is the basic objection to
using least-squares methods to estimate the parameters of a stochastic
equation that is part of a system of simultaneous equations.

In order to isolate the several factors which affect the size of the
asymptotic bias in least-squares estimation of (1), let us examine certain
still simpler models. In the figures that follow, solid lines represent
“true” or “‘undisturbed” relationships. Dotted lines represent relation-
ships that hold for specific nonzero values of the disturbance. We may
think of such a nonzero value as causing the relationship to shift from

¥

88 yt+vyzte=0Q

Fiaure 1—Case 1.

its solid-line position to a dotted-line position. The number of points
{(observations) shown in each figure is necessarily finite, but the reader
should understand that we are concerned with what happens when the
number of observations increases indefinitely.

Case I: Y4124 e=u

This is a situation in which the least-squares procedure is entirely
appropriate for the estimation of v. Under our assumptions, the value
of z is obtained from its own independent law of behavior, and the value
of y corresponding to this z is then determined from the above relation.
For example, z might be a price set by a governmental authority and y
the quantity supplied. Thus we may think of z as capable of free varia-
tion along its axis, and for different values of z we observe a number of
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different points which, except for the effect of sampling fluctuations in ,
trace ouf the line

¥+ vz 4+ e=0.

Furthermore, we know that the failure of an observed point to lie on
this line is due exclusively to the influence of sampling fluctuations in u
upon the y-coordinate of the point. In this situation minimizing the
sum-square residual in the y-direction can be shown to yield unbiased
estimates of v in samples of any size.’

b

-88: ¥ +8,y,+e=0
DD: Byy + y,te,=0

X
Fi¢ure 2—Case II.

In all subsequent cases we consider a model specifying two equations
and study the asymptotic bias incurred if the first equation were to be
estimated by the least-squares method with y, selected as the so-called
“dependent” variable.

Cass II: th+ Buys + & = uy,
Bayi + Yo+ e = u,.

This is a case of lack of identifiability."® Here y; and 3, are constrained
by two relationships, which are sufficient {o determine uniquely the

¥ See Chapter VI, Section 4.1,
% See Chapter II.
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point (§1: , F2) = (§1 , #=) that satisfies both ‘“‘undisturbed” relationships
for all £. Observed points stray from the intersection of DI and S8 only
to the extent prescribed by u, and us. Thus, all we can observe is a
scatter of points (yi¢, ¥} about (%, #), and no tracing out of either
line can be obtained. Estimation of 8, or of any of the parameters 8, ,
o1, o1z, o1 , is therefore impossible,” either by least squares® or by any
other methed.

Case HI: ¥+ Buy: + a=1u,
Bath + w2t vzt &= u,
0dlg = 0-.
» yl
88: ¥+ By +¢=0 SS;' ntbyy +e=0
D™y bz tey,=0 6= L234) DYDY Byt BAv =0 ((=1214)

Case IIa: gy = 0 Case IHb: 8y = 0
Ficure 3 '

In Case III an exogenous variable z appears in the second equation
only. For a fixed value of z this equation can again be reduced to a
two-dimensional relationship between 3 and 3, . We may represent the
“undisturbed” relationship, conditional on this value of z, by a line in
the yy.-plane. For different levels of z we obtain a family of parallel
lines (see Figure 3). The ‘‘undisturbed” point (%, ) corresponding
to any observed point (3, , ¥2:) is determined as the intersection of the

1t Tn the absence of additional, very specific restrictions on the joint distribu-
tion of the w;. )

2 For the reader of Chapter VI, Section 1, we may add that if a least-squares
statistic “estimating’’ 1z with y selected as “‘dependent variable” is determined
nevertheless, its probability limit is the regression coefficient wis/ws of #; on 02 in
the distribution of the disturbances of the reduced form; see Chapter VI, equa-
tions (1.23)-(1.25).
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line 88 with the line of the above family that corresponds to z = z,.
Thus it is again possible to observe points that differ as to the “undis-
turbed”” point which they approximate, so that we have a scatter about
the entire line 88 rather than about a single point of this line. The pres-
ence of z in the second equation gives us identifiability of the first by
permitting y. to behave in a manner that resembles the free variation
of zin Case L. 7

Note that the equation not containing z 1s the one whose graph is
traced out. If both equations contuined z, both lines would shift with
variations in z. Then the obscrved points would approximale intersec-

A

%

Figere 4

tions of the sort shown in Figure 4 and would trace out a line corre-
sponding to a linear combination of the two equations.”

Now we come to the important distinction between Case IIla, in
which 8» = 0, and Case 11lb, in which 8 is different from zero. Let
us consider an observed point {yi., ye, 21,) with which is associated
some specific value of u, , say uy, . If uy, 7 0, its effect is to shift 88 in
a parallel fashion—i.e., the slope $;; remains the same, while the inter-
cept becomes u;, — ¢ instead of — ¢ . If we assume for the moment that
Uy = 0, the observed point will be determined as the intersection of the

13 If 2 actually entered into the first equation we should not attempt to esti-
mate this relation from observations on y; and y. only. Proceeding to three di-
mensions we would find that identifiability was lacking and that the situation
was analogous to Case II.
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shifted line S§ (represented in Figure 3 by a dotted line) with the line
DD corresponding to 2 = z,. We see that in Case 1I1a the y.-coordinate
of the observed point remains what it would have been for w;, = 0,
while u;; is added to the y;-coordinate. Minimizing the sum-square
residual in the y,-direction therefore seems entirely appropriate. In
Case I1Ib, however, the effect of sampling fluctuations in wu,, is present
in both 3, and s, , and neither coordinate is the same as for the point
determined by the intersection of the “undisturbed” relationships. Thus,
in Case IIIb there seems to be no reason to suppose that minimizing
residuals in the y-direction is in any way preferable to minimizing in
the y.-direction or that either process should result in an unbiased esti-
mate of B12 . This case represents a third situation, intermediate between
Cases I and II, since estimation of the first equation is now possible
(i.e., identifiability is present) but the lcast-squares estimates contain
asymptotic bias, This bias may be found explicitly if we solve for i
and y. 1n terms of z, v, , and u» to obtain the reduced form:

€, h = (Brzyz + Prez — & + w — Prau),

1
1 — BisBn

(a) Yp = (—vz + Buer — &2 — Baur + ug).

1
1 — BB
If the variance of z approaches a finite limit or a finite probability limit,
u.. , a8 the sample size increases indefinitely, then the least-squares
“estimate’ by’ of B , obtained by selecting #; as the dependent variable

in (1), approaches the finite probability limit

0
) g% = plim b}’ = plim — T,
Tow T Mysvy
where
0 1 T I T T
5] My = T ; Yulln — Ve !Z; Yie ; Yie

is the second moment of y; with y; . Under the assumptions of Case 1II,
the second moments of u;, with 4., u with z, and u, with z all have
probability limits equal to zero, while the variances of u; , %2, and z have
the probability limits ¢f |, o3 , and g,. , respectively. Thus, when we sub-
stitute (4) and (5) in (6), we obtain

- Bnot + Buos + Bror e

Bhot + o + Y
Since the sample moments are consistent and asymptotically unbiased
estimates of the population moments and since we are dealing with a

(8) 85y



LEAST-SQUARES BIAS 229

rational function of the moments, we may regard the probability limit
Biz’ of biy as the regression coefficient, of ¥ on ys in a sample of infinite
size. The asymptotic bias that is present when the least-squares regres-
sion coefficient b3’ is used as an “estimate” of i is therefore given by
the difference 8y ~ B .

From (8) it is clear that 83 = Bz when Ba = 0, as in Case I1la.
This is what we should expect, both from the graphical argument and
from the fact that y» is independent of u, if 71 does not appear in the
second relation and if %, and 4. are independently distributed. This case
then reduces to Case 1.

¥ %

88: »+8 +¢;=0 88: » tiay +¢=0
ppe n‘;r:+'ﬂ.+f:=° = 1,23} DYt Htyz =0 (021,23}

Yy

Figure 5—Case IV.

For g # 0, the asymptotic least-squares bias in the estimation of
ﬁ.l! iS

1 — BubBn)fnoi

9 § — = - :

® T B o+ v

This is a special case of a more general formula, which will be developed
later.

Case IV: 1 + By + a=u,
V24t eae=u,
o 7 0.

We have not yet discussed the effect of correlation between u, and . .
In order to distinguish this effect from that of 8y, we now assume
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Bn = 0. Suppose that we have a positive correlation between the
u; {ez > 0) and suppose that SS shifts upward because of a positive
value of 1w, . Then the line DD that corresponds to z = 2, will be shifted
to the right by a positive value of us, more frequently than it is shifted
to the left by a negative uy; . Similarly, downward shifts in SS will tend
to be accompanied more often by leftward shifts of DD, This gives us
the same kind of pattern of observed points as in Case 1IIb, where the
lines DD were diagonal rather than vertical {reflecting the presence of
Bs) but where o1» was assumed to be zero. (Compare the figure for
a2 < 0 with Case IIIb in Figure 3.) In particular, the observed points
lie in a similar position relative to the corresponding “‘undisturbed”
points. Again the effect of sampling fluctuations in %, is present in both
1 and y» . Neither coordinate remains unaffected by the occurrence of a
nonzero value of u; and there is no reason to suppose that minimizing
residuals in the my-direction will lead to an unbiased estimate of 812 .
Again assuming that the variance of z approaches the finite limit or
probability limit u,, , we may obiain an explicit expression for the bias
that occurs in this case. Solving for 3, and y» , we have for the reduced
form

(10) % = Buyz + Pue — a + u; — Puus,
(1) Yo = —yZ — & + Us.

By a calculation similar td that used in Case III we then find that the
least-squares estimate of Bi. approaches the probability limit

m Buoz + BirYme — ou
B2 = 3 = .
73 + Y bhzs
The asymptotic least-squares bias in the estimation of 8y is therefore

— 712
2 ® —Bu= 3
(12) B2 Bz o+ 7
The correlation pz between u; and w. is, of course, contained in the
ferm oy , Since 1y = pumas , and (12) may be written so that py; appears

explicitly in the expression for bias.

Case V: 1+ By + a=u,
Batn + Y2t v+ &= U,
a2 ;é 0.

More generally, we may consider cases in which both 8y and ¢1» are
different from zero. Our two equations then have the same form as in
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Case 111, omitting the restriction g1 = 0. Such a situation is shown in
Figure 6. Clearly the two sources of bias may conceivably cancel each
other in this case, if, for example, a situation like the one on the right
in Figure 3 is combined with precisely the right amount of positive
correlation between the disturbances. This situation is closely connected
with the condition discussed earlier,

(13) Uz = Pathy,

under which the ys-coordinate will remain unaffected by sampling flue-
tuations in w . However, to avoid bias in large samples it is not neces-

bl

Ssa) m Nt By Tezo
DUDY: By + y +vzte=0 (t=123)

Figure 6—Cuase V.,

sary that each i, assume the “irue’” value g, that would occur for
Uy = ugz, = (. It is sufficient that the conditional expectation of y,. for
given values of z;,, 2s., and uy, be %2, . Thus, it is sufficient for the ab-
sence of bias that

(14) Blug | ) = Bnwr ,

and this is precisely the situation under which the two sources of bias
cancel each other.

In Figure 6 the dotted lines, as usual, represent the shifts caused by
the occurrence of particular nonzero values of u, and u; . Note that for
points like P; and P, the y:-coordinate is what it would be for uy = u; = 0.
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If the correlation between u; and u, is such as to make these points typi-
cal (in the sense that the value of u; is its expected value, given wy),
then the two sources of bias cancel each other.

General two-equation linear case. Let us now return to the model con-
sisting of equations (1) and (2). This is still more general because both
of the equations contain exogenous variables. The expression for bias in
this case is obtained as follows. Solving for 7, and 4. , we have

(15) = 1—_%;5; (—mz + Buyez: — e 4+ Buer + 1 — Buus),
(16) Y2 = 1——1.6‘1332-1 (Bavizr — 7222 + Bmer — & — Bntiy + ug).

If we assume that the second moments of the joint probability distribu-
tion of 2; and z; approach the finite limits or probability limits u,,,, ,
Fayss > 80d g, , then we obtain for the probability limit of the least-
squares estimate of g,

Buot — (1 + Bubau)on + Buvs + 312‘72#:,:,

(17) Bl =
Bnoi — 28nows + o3 + 'mu.%
where
#2
H#:3:] = Magey — e
fhzy 2y

is the va.nance of the residual 2z from the least-squares regression of 2
on z; . The asymptotic least-squares bias in this case is therefore

(1 — Bufn)(Baror — an)

(18) i = Bu = .
ﬁ:w% — 2Bno2+ Ug + ’sz'!-lsgzg

This is the most general case to be discussed in this chapter, and it
will be of interest to analyze and interpret the expression for bias that
has been obtained. First we give a numerical example to indicate how
large the bias (18) may sometimes be."* Suppose the equations of our
model are in fact

nh+01ly4 2 = U,
—02yp + y2+ 0Olz = uy,
1 See Chapter VI, equation (5.19).

¥ An example based on actual dats is given by Haavelmo in Chapter IV, Sec-
tion §. For another constructed example, see Koopmans [1945].



LEAST-SQUARES BIAS 233
and suppose that o1 = 1, o = 0.01, p.0.0 = 2, and o1, = 0.005. Then,
from (18),

1.02(0.2 + 0.005) _
0.04 + 0.002 + 0.0001 + 0.02

(1)
12 — B = —

—3.307.

This is a very large relative error.

Proceeding to the analysis of (18) we find that y. plays a crucial role,
as we might have expected since this 1s the variable wrongly treated as
independent. of #, when residuals are minimized in the y-direction. It is
possible to interpret both the numerator and the denominator of {18)
as quantities which describe certain aspects of the behavior of g, in re-
lation to other variabies of the system. To demonstrate this we rewrite
(18), substituting for z; its value in terms of 2, and 23 , to obtain

7 a
— 2y — Y2y — My — U
Y2 = 1= .61 . [(ﬂzl’h 72#2121) 1= Y22 (Baraa )] + 1
(19) 2
=y + P o,

say, where y is a constant. This may be regarded as a decomposition of
2 according to the sources of its variation. The second and third terms,

20 _ T2 0 _ Baw — U _ &9 Cw)
(20) 1 — Buafn - Brofin yt

give us the component of y, that is uncorrelated with z; . The component
of ¥, that is independent of both 2, and z, is the third term,

(21 ﬂzl‘ul — Uz _ (w)
) 1 = Bufx be

If we divide both numerator and denominator of (18) by (1 — Bubn)’,
the numerator becomes the negative of the covariance of the disturb-
ance w with (21), the “unexplained” component y* of .. Thus the
bias is proportional to cov (u: , ys*'), i.e., the covariance between , and
that component of y, which depends on u; and us . {There can, of course,
be no covariance between w, and those components of ¥ which depend
on the z;.) Since u, enters into the expression (21} for 45 with the co-
efficient $2/(1 — Bufu), there will be a contribution from this source
to the covariance in question only if 8 # 0, as we saw in Case I1Ib.
Similarly, there will be a contribution arising from the presence of u; in
the expression y3*’ only if o1 # 0, as we saw in Case IV. We observe
from (I8) that these two sources of bias cancel each other if and only if

(22) oz = Buor ,
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as we should have expected from the condition (14) mentioned in the
discussion of Case V. .

The variance of ¥, is built up from the variances of its components in
(19 by

(23) var () = var (g3™”) + var (g5*¥) + var (")

In particular, the denominator of (18) after we have divided by
(1 — BpBx)’ is seen to be the variance of (20). Thus the bias (18) is
found to vary inversely with the variance var (zi*® + yi*) of that
component yé’g) + ¥ of y, which is uncorrelated with z; .

The analysis just given can be summarized in the formula

—cov {uy, sy —cov (ur, y5*%)

var (g% 4+ 33" var 8P) 4 var ()

(24) By — Pu =

In explanation of the denominator in (24), we recall that in Case II1
the introduction of z into the second equation had the effect of lending
to y, the free variation of which z itself was capable. Thus we were able
to observe points which, except for the effect of sampling fluctuations
in uy , traced out SS. We recall further that this effect depended on the
absence of z from the first equation. Therefore, it is not surprising that
in the more general case only that part of y.’s variance

(25) var (%) = Yeas:d

which is explained by 2 (i.e., by the net effect of z, , after having allowed
already for the effect of z;) contributes to identification. We shall call
this the identification term in (18). If this term is zero, z; and z; are in
fact the same variable and identifiability is absent.*® However, (18) tells
us something more than this, which perhaps we had no reason to suspect
a priorli. Whenever the identification term is not zero, the size of the
least-squares bias is a decreasing function of this term. Furthermore,
the identification term plays exactly the same role in decreasing bias as
does the part of ’s variance that depends on the disturbances,

1¢ The reader may be surprised that in this case the expression (18} for the
asymptotic bias does not take the indefinite form 0/0, because now 5. is actually
indeterminate in terms of observable characteristics. However, (18) was never
intended as a means of determining 1, from S.3’, or from an estimate thereof,
and would need supplementation by other relationships involving additional
observable characteristics if it were to be 80 used (instead of the more straight-
forward estimation methods of Chapter VI) in the case where identifiability is
present. In case identifiability were absent, only insufficient supplementation
could be found, although (18} would remain a valid statement connecting strue-
tural parameters, not all identifizble.
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ArpPENDIX

AN EXPRESSION FOR ASYMPTOTIC LEAST-SQUARES BIAS IN A MORE
GENERAL LINEAR MODEL

Let y be a row vector of endogenous variables; #, a row vector of exogenous
variables whose moment matrix approaches a finite nonsingular limit or prob-
ability limit; and u, a row vector of normally distributed, serially independent
disturbances with zero mean and constant variance. For any matrix or vector 4,
let A’ denote the transpose of 4 and let 14 denote the matrix 4 with the first
row deleted. Let

’ '
Baya + 12, = uy

be a single equation (say the first) in & complete system of G stochastic eqgua-
tions,

By’ + Iz’ = v'.
Ifo = ~B7'T' and v’ = B~'’, then this sysiem has the reduced form
y =10 + v

Let yas and z«x be vow vectors which contain, respectively, the elements of y
and of z not appearing in the first equation, Then [ya  yas] is a partitioning of y
and [z+ 2«+] i3 a partitioning of z. If @* is the number of elements in Ya , let
[(a.s TEss«]be a partitioning of the first G* rows of IT such that Ia.«s contains as
many columns as z«x . Let (B~), be the first (2 rows of B~1. Let o, be the vector
given by the first row of the population covariance matrix = of the elements of «.
Let #3 be a row vector containing the first G2 elements of », and let 1,5 be the pop-
ulation covariance matrix of the last G4 — 1 elements of v,. Finally let M.o,e be
the limit or probability limit of the covariance matrix of the residuals from the
regressions of the elements of zs+ on the elements of z« .

1f the first element of y, is treated as the dependent variable, then the asymp-
totic bias in the least-squares estimation of the last @ — 1 elements of the vector
Bs is given by

¥l - (B )y -+ o,
where
¥ = Maus - Mot - (Taae + ufla

is the probability limit of that part of the covariance matrix of the elements of
¥a which is independent of the elements of z« . Furthermore, if M;,;, and Mz, ; de-
note, respectively, the limits or prolability limits of the eovariance matrices of
the elements of z: with the;nsélvcs and with wll the clements of 2, the asymptotic
least-squares bias in estimating v+ is

ML, - M. - 5 | PO 2 B s - 0’:.

Talse

These expressions for bias remain valid in cases where Iagged endogenous
variables are present if certain further conditions are met which insure that the
second moments of the endogenous varizbles still approach finite probability
limits under these circumstances.
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1. INTRODUCTION

The purpose of this chapter is to explain the methods used to caleulate
estimates of the parameters of systems of simultaneous stochastic differ-
ence equations. Four methods will be explained in detail and will be
illustrated with the work done on the variants of a model of three equa-
tions proposed by Klein.! All four methods are maximum-likelihood
methods® if the distribution of disturbances is in fact normal. These
methods are: the full-information method with no restrictions on the
covariance matrix of the disturbances, the full-information method
with diagonal covariance matrix of disturbances, the limited-information

! This model is Klein's Model 1. See Klein [1950, Chapter III, especially pp.
58-80]. The authors sre indebted to J. G. C. Templeton and D. Waterman for
supervising the completion of the tables and for carrying out adjustments in the
notation, and to D. Waterman and E. Goldstein for assistance in reading proof.

* The theory of these methods is discussed in Chapter VI, especially Sections
5 and 6.

236
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single-equation method, and the limited-information subsystem-of-
equations method. These are abbreviated F.IN.ID.,, F.I.D., LIS.E.,
L.IS. All of these methods apply only to the case in which the dis-
turbances are assumed to be serially uncorrelated, although extensions
can be made to the case in which they are serially correlated.

The F.ILN.D. and F.I.LD. methods make use of all the information
(or assumptions) concerning the restrictions on the parameters. The
L.LS.E. and L.L8. methods make use only of the information concerning
the restrictions on the parameters of the single equation or of the sub-
system of equations to be estimated, as the case may be.

Two models, to be designated (a) and (b), will be used to illustrate
these methods. These models involve the following variables: €, con-
sumption; =, net profits; Wi,, private wage bill; Wy, government
wage bill; I,, net investment; Z, , capital at end of year ¢; ¥, netincome;
¢, business taxes; G, government spending; F,, net foreign balance.
The subscript ¢ serves to date the variables; ¢ is measured in years and
equals time from 1931. All variables apart from ¢ are measured in the real
value unit: billions of 1934 dollars. The equations of both models are

(1.3) Ci = an + army + (Wi + W) + asmey + e,
(1.ii) I = ox + asmy + agmes + 0:Zi + Use,
(Lii) Wi = a5+ ooV + 70 ~ Wa) + amwe
+ oYy + 7oy =~ Wae) + us ’

subject to the following three identities:

Ii=Z—Z,,,
(2) Y,+7;=C'¢+I,+G;+F;,

Yi=Wyu+d Woy+ r,.

In Model (a}, C,, I,, Wiy, Z,, %, , Y, are assumed to be jointly de-
pendent. In Model (4), C,, I,, Wi, Z,, =, Y., (G. + F.}, 7. are as-
sumed to be jointly dependent. In the following we shall drop the
subscripts ¢ whenever possible without ambiguity, and variables lagged
by one time unit will be denoted by a minus one subsecript {e.g., =, , will
be denoted by w_,). Now the three identitics can be used to eliminate
three jointly dependent variables, leaving three stochastic linear equa-
tions in which only three jointly dependent variables are involved for
Model (a). For Model (b) five jointly dependent variables are left. This
implies that for Model (a) the three equations form a complete system
while for Model (b) they only form a subsystem of a complete system,
but the two additional equations that would make the model complete
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are not stated. In Model (b) nothing is assumed about the restrictions on
the parameters of the remaining equations. Thus the F.IN.D. and
F.I.D. methods caunot be applied to estimate the coefficients in this
model. Instead, one may use either L.I.S.E. or L.I.S. For Model (a)
one may use F.IN.D. or F.I1.D., depending on the assumptions con-
cerming the covariance matrix 2 of the disturbances w;,, t2:, %3 . One
may also use L.IS.E. for each individual equation or use L.I.S.E. on
one of the equations and L.I.S. for the subsystem consisting of the
other two.

It should be noted that L.I.S.E. is the only method for which an initial
approximation to the estimates is not required. It is also a comparatively
cheap method of obtaining consistent estimates. Thus, if the other
methods are to be applied, it is a logical step to obtain L.I.8.E. estimates
first and to use them as an initial approximation in the other methods
where more informsation concerning the nature of the parameters is used.

This chapter assumes a knowledge of the abbreviated Doolittle method
for matrix inversion.

2. NoraTioNn AND GENERAL PROCEDURE

In the computations that are performed for the various estimation
processes certain special notations have been found very useful. Some
of the notations will be explained here hefore developing the L.I.5.E.
technique,

The symbol y, represents a vector or a matrix of one row whose cle-
ments are the jointly dependent variables. The symbeol z; represents a
vector of predetermined variables. In Model (a), omilting subscripts ¢,
h = C,y2=ﬂ',y3= W, + Wz,y¢=1,ys= Wl,?/ﬁ =Y 4+ r— Wz,
aa=bLa=x,4,58=2_,a = (Y + + — Wy)_1.Let z; be the vector
consisting of the elements of z, adjoined to those of y, ; thus

$:={y: 2l = [yn Ye - 2a zn }.

The symhol 4,, denotes a matrix with as many rows as there are ele-
ments of y and as many columns as there are elements of z. The matrix
product ¥, A, is a row vector with as many elements as = has.

The symbol 4,. denotes the transpose of the matrix A,., and . de-
notes a one-column matrix. The product 4,.7: is a one-column matrix
with as many elements as there are elements of y, . The product y.4,.x,
is a one by one matrix (scalar), while y:x, is a matrix with as many rows
as there are elements of y and with as many columns as there are ele-
ments of x. The subscripts yz are sometimes omitted from A,; in cases
where no misunderstanding can arise,

Just as x, may be partitioned into [y, z], so Ay, can be partitioned

3 The Doolittle method is discussed by Dwyer [1951].
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into[B (], sothat A,.«: = By, + Cz:. Finally, there will oceur situations
in which the first element of ¥, will not be needed. In this instance we
write 1y, = [ye yu --- |- The symbol 104 represents the matrix A4
with the first row deleted, 5,4 is the matrix A with the first column
deleted, and 1,4 s the matrix A with the first row and the first column
deleted.

Considerable use is made of the moment matrix®

3) MY =723 2w — 2 702 e,
¢ t

where T represents the number of observations on x,. Since we have
twenty-one years of observation, T = 21 in our problem. It is of great
convenience in calculating to deal with a moment matrix in which the
elements on the main diagonal are close to one. If the variables z,; were
replaced by kax,, = :t:ﬁ‘:’, then the Zjth element @' of M ix replaced by
kimy = m@. In particular, the diagonal (-.in ents of MY can be
made close to one by selecting the L; properly. An equation which origi-
nally read ayrn + oaatw + --- = 1, can be transformed to (a/k)}
+ (as/kn)zs’ + --- = u, or af”x‘,’{’ + a2 o = u,, where a; =
ai®k; . It is then necessary to readjust the results after the computa-
tions are completed.” Hereafter the expressions in terms of the original
variables and coefficients will always have superscripts (0), eg., z*.
Where necessary for clarity, the adjusted variables will have superseripts
{a), but otherwise their superscripts will be omitted. Finally, 1t will
usually be convenient to let k; be that power of 10 which makes m }
lie between 10 and 0.1.

Since the computations are such that mistakes occur easily, a good
deal of effort should be devoted to independent checks of the results.
One of the most useful tools in this endeavor is the check sum. Thus,
when a series of numbers is copied from one source to another, the sum
of the original numbers and the sum of the copied numbers are obtained
and compared. If the two sums are equal, it is reasonable to assume,
although it is not absolutely certain, that the copying has been correctly
cartied out. Check sums are applicable to most matrix operations. For
example, if one is obtaining C = A B, where A = [lai |, B = || b ||,
C = |lecal, then cq = D2 ; a;jhy . If one constructs the sum column
bz = Ek b , then E; a; b = Z; a;; Z,{- by = ZfrZi A = Ek Cig
= ez . Thus, by computing bz, multiplying it on the left by A, and
comparing this result with the sum column of the product (ie., c:),

s For eomputational convenience we use a definition of the moment matrix
differing from that used in Chapter VI, equation (5.54).

§ For computational convenience no normalization is introduced until the very
end of the computations.
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we have an adequate check on the work. This method also applies to the
inversion of matrices. Check sums in the computations reproduced at
the end of this chapter are set in italics.

In complicated eomputations there arises an accumulation of rounding-
off errors. In order to avoid the effect of these it pays to carry out the
computations to a great many significant figures. Indeed, from six to
nine figures are usually carried to avoid the effects of rounding-off errors®
even though the data are such that the fourth figures of the results have
little meaning,

3. Livrrep-INForMATION SiNGLE-EqQuaTion METHOD
Consider a single equation of a system, which we shall write
(49) By + Boyz - + Bosles + M1 + - - vasZxx + e = U

We shall denote by ya the vector of the G* jointly dependent variables
appearing in the single equation; 24 is the vector of predetermined
variables appearing in the eguation, and z«+ is the vector of predeter-
mined variables appearing in the eomplete model but not appearing in
the equation under consideration, so that z = lzx z«s«]. Let G4 K*,
K** K represent the number of elements of ya , 2+ , z¢x , 2, respectively,
with K = K* 4+ K**,

In particular, let us deal with each of the equations of Model (b) by
the L.IS.E. method. Then C, I, Wy, Z, =, ¥, & + F,  are assumed to
be jointly dependent. The remaining variables, Wy, =y, Z, (¥ + 1
— Ws)_1, and {, are regarded as predetermined.

For the first equation we have

BIC + Bar + B(W, + Wo) + vimey + & = i,

(5.0) v = [C = (W, + Wy, e = [r,
' 24 = Wa Zy (Y 4+ +— Wy {
G* = 3, K* =1, K** = 4, K = 5.

For the second equation we have

ﬁEI + .32271' + 'Yf’lra + ngrl + & = us,
ya = I =], 2w = lra Z.],
2ee = [Wo (¥ + r = Wa)y ],
Gs = 2, K* =2 K¥* = 3 K = 5.

(5.11)

¢ Nine figures are usually carried because to do 80 costs little more than to carry
six figures. On the other hand, carrying more than nine {on the ten-bank desk
caleulators used) is considerably more expensive than carrying nine.
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Por the third equation we have
BIWHBY +7— W)+t (Y +7 - W+ & = w,

(5 11]) A = [W1 (Y + T - Wz)], Zx = [t (Y + T — Wz)_l],
' / Tk = {Wz ol Z—l],
Gt = 2, K* = 2, K** = 3, K = 5.

It should be noted here that if Model {a) were being treated in this
way, this would require as the only difference from Maodel (0) that the
2¢+'s would include in addition 7 and G + /F.

We shall concentrate most of our explanations on the sceond equation.
Hence we shall omit the superscripts from 87, -, v1, --- and the
subscripts from u, and e in what follows. However, some of the work
can be most efficiently done for all the equations simultaneously. In
the L.I.S.E. case the logarithmic likelihood function is given by

7
® L®@,) = const. — } log P2/ aaf
nBA WdAﬁA
where B, is the vector of coefficients of ya , and Waa and Wis are as de-
fined below in (7) and (12). Note that this expression for L is obtained
from that given in Chapter VI, formula (6.20), by substituting Waa
and Wi, (based on M) for Was and Wi,a (based on M), respectively.

First the time series for the variables @ are prepared’ in Table 1.1.2
and 2 sum column is formed. Below the series the sum of each ¢olumn is
obtained over the 21-year period 1921-1941. This computation is checked
against the check sum. Then the means are computed and checked,

m® = (1/7T) }:, 2%, where T = 21.In Table 1.2 part of the calculation of
Mig,) =T, ¥z @ — 3, 2. 20, 21 is illustrated. Note that the
page is broken up 1nt0 small blocks consisting of four lines each. For
example, 1n the block corresponding to y5° a.nd z“’) We have on thefirst
line Z: ys 2% on the second line 7 D e 2% on the third line
Z:g 39 -2 2'%; and on the fourth line T'- Z y 29— 2 %2
2, which is the corresponding element of M3, . Because of the sym-

? While several of the following tsbles have been omitted to conserve space, we
shall refer to them by number as though they were included. Furthermore, in these
tables only one sum column appears—let the reader keep in mind that in actual
practice two sum columns are always used, which are identical if no error
ie present.

The computations were performed with nine digits, of which only six are re-
produced, without rounding the sixth digit off upward if the seventh is 5 or more.
Because of the cutting-off of the printed tables after the sixth place, some of the
check sums may appear to be slightly in error.

8 Not reproduced. The time series omitted here may be found in Klein {1950,
p. 135].
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metry of Mys', the blocks below the main diagonal need not be filled in.
Finally, the check sums are carried out as usual and the sum must include
the terms that were not filled in.

At this point the adjustment factors are determined. Since the moment
corresponding to yi is 19770.02, the appropriate adjustment factor is
ky = 0.01. It is'a peculiarity of this particular set of time series that all
the adjustment factors are 0.01. Alihough this permits short cuts and
simplifications, we shall proceed in the general fashion. In Table 2.1 is
given the translation page, which is very useful for reference throughout
the work. The variables are listed and given labels and the adjustments
noted and the adjusted means listed. In Table 2.2 the adjusted moment
matrix M is copied and a sum column formed. In general, when the
adjustments vary, the check-sum method of checking the adjustments
does not apply. In that case one cannot overemphasize the need to check
and double check the copying. In this particular case all elements of
ML are multiplied by 0.01 X 0.01 = 10~* and the check sum applies.
A great many of the numbers copied for MY are used again on the next
page and it is usually a good policy for saving time and avoiding copying
errors to use a carbon paper to reproduce M and M¥ on the next com-
putation page for use in Table 3. For this reason it is recommended that
the 2’s precede the y’s in Table 2, contrary to the usual notation.

We are now working with adjusted matrices, suppressing the super-
seript in M'“, In Table 3 the main computation is that of M,. M7} M., .
This involves a useful variation of the abbreviated Doolittle method.
First M,, and M, are copied at the top of the page, and then the forward
solution of the Doolittle method is carried out immediately below.
Then the 4jth element of M,.M-, M., can be computed by cumulating
the product of the terms in the odd rows of the éth column with the
terms in the even rows of the jth column. For example, the term in
M, MM, corresponding to 0.728666 is obtained as (1.213170)
- (0.024545) 4 (0.775604)(0.807153) + (—0.352785)( —0.198699) -+
(0.052376)(0.019086) + (—0.000917)(—1.917204). Since M,.M;} M.,
is symmetric, the terms below the main diagonal are omitted.

In the meantime, M,, has been carbon copied in a convenient place,
and

(M Wy =M, — M, MM,
is computed.

The work done up to now is applicable to all of the equations. Now
let us proceed to compute the estimates of the coefficients of the second

equation, where ys = [I @,z =[x Z.)
In Table 4.1, Myx = M. ,, , which is a submatrix of M,,, is copied
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from M .. and then inverted. In Table 4.2, M+, is copied from M.. , and
we compute

(8) : P:;c = _:;ﬂ_l*a ’

(9) MuxPry = MosMzxM s,

where M 4+ is the transpose of Ms, . In Table 4.3 we compute

(10) Rya = Ma,M2 F 0 — MasPis .

(Note that Ms.M; M., is a submatrix of M,.M7;' M., .) Then Waa
is copied from W,, in Table 3 and

(11) Qas = BaaWas

is computed.®

We are now in a position to obtain the adjusted estimates of the co-
efficients of the jointly dependent variables as that value b, of the vector
84 which minimizes the variance ratio ﬁAW:AB;/BAWMﬂ; , where

(12) W:A = RAA + WAA .
Thus we must choose B84 = ba so as to minimize
BalRas + WﬁA)B,A =14 3ARAA.B:*. .
BaW 2484 BaW asBa

This is achieved if we take ba 50 as to minimize SaRasBs/BaWaaBs . Taking
partial derivatives with respect to the 7th element 8;0f8a {(t = 1,-- - ,G%)
and setting them equal to zero (noting that Ris and W aa are symmetric
matrices), we obtain

(82 W 5285) (; B Tmi) = (BaRasB3) (; Butwns) (E=1, -+, Ga)

That is,

ﬁARdAB’A _ E@.{r,{}f _ 7th element of (RMB;)
BaWasBs  ZuBewn:  ith element of (Waas)

for each i. Therefore Rasfa = I'WasBa or (Raa — I'Waa)84 = 0, where
I' is 2 minimum. Thus we must choose the vector bs to correspond to the
smallest root I! = I} of | Raa — I'Waa | = O or to the largest root k' =
K = 1/8} of | Was — k'Ras | = 0. Note that, since any constant multiple

*In the case where K** = H — 1, Rss can be shown to be singular and this
computation cannot Le done. To solve this case, sce Appendix 1. Another special
case is that in which K* = 0 (i.e., where no z's appear in the equation). Appen-
dix 2 treats this case.
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of ba will serve just as well as b, itself, normalization does not affect this
procedure.

In Table 4.4 we find the characteristic vector corresponding to the
largest root K of | Was — kfRAAi 0. We take an arbitrary column
vector™ " g, . Then we compute gt » = Qaagen and k¢, equal toa column
vector whose elements are the quotients of corresponding elements of

.09 59.2 14.5
e and gtoy. That is, if gty = (0 26)’ da = ( ) thenk, —( ] 2)

Next we compute g = Qaagq) = Qi ag and k(z) as the column vector
whose elements are the quotients of corresponding elements of gy and g{y.
We continue in this fashion until all elements of k) converge to the same
limit, which is the largest root &} . Then the last column vector gt , orany
multiple of it, is the characteristic vector we want. This vector equals by
up to the desired degree of approximation

To prove that each element of &l converges to k , and that g
converges to the corresponding characteristic vector by , we consider the
G* characteristic rootsk} > kb > --- > kla > Oof |E'T — Qaa| = 0.
These are the same as the roots of | Waa — k' Raa | = 0. We also consider
the correspondjng characteristic vectors by, ---, bga . Since these b,
(g = 1, , G%) span the G*-dimensional space, our arbxtra.ry Vector
q'(o; can be ertten G = Mb1 + -+ + Agabpa ,and since Qs bi = kb b:
we have

9 = Qiago = MEL*BL 4 -+ + Aoakb2boa .

The zth component q:-m =

lkln ; i l2(kt ) (b;}l }ﬁf (@):‘ (b‘t‘?d)i}.
Mk (Br) {1 TR A U Ay

As n increases, the quantity in braces approaches one. (Since &} /4! |

, khaskt a,]l lie between zero and one, thelr nth powers approa.ch
Zero. ) Thus gtm is a,pprommately equal to ME&{"b; , and each element of
kb is a,pprommatelyequal to Ak (by) o/ Mk (b)) = K, of b) ,the largest
root. Since g,y is approximately equal to a scalar multiple \ki"d; of b,
we see that g, is approximately a characteristic vector corresponding
to k;

An error in the later stages of this iterative process will probably
show up; and at any stage, if it does not show up, it can at worst only
delay convergence. At times convergence is slow. To treat this situation
see Appendix 3.

Now we compute ¢y = —Pisbs . Finally, in Table 4.5, we list the

12 The gtoy in the Table is really gfw) ;i.e., our gfp is the result of ten prelimi-
nary iterations which are omitted to conserve space.
It See Knopp [1928].
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variables [ba ¢4, the adjusted means m' taken from the translation
page (Table 2.1), and the adjustments. Then e = —[by celm’ is com-
puted. In this case e = —-2.877828. Then [(bs ¢s ] is deadjusted to
B ¢ ¢ and finally is normalized by dividing through by the
leading coefficient to get [bY ci” ¢”™™, Hence cur estimate
is  BY e e ™ = [1.0 0.022994 —0.746704 0.181972
— 25.780463], that is, the estimated equation is

I + 0022994 = — 0.764704 =,

(13)
+ 0.181972 Z_, — 25.780463 = u.

Now that the estimates have been obtained it may be desirable to
compute estimates of their sampling variances and covariances. This is
done in Table 5. In Table 5.1, b, and Waa are copied from Table 4. Then
baWas and b, Wik, are coraputed, the latter being a scalar. Finally
1] (baWan)’ (baWas)} is calculated. Note that (baWaa)’ is a column vector
and baWaa is a row vector; (baWas) (baWaa) is therefore a matrix of rank
one whose 4jth element is the product of the ith element of baWaas by the
jth element of baWaa . From this matrix ;3 { (baWaa) (0aWas)] is obtained
by deleting the first row and first column. In this particular case
1f(baWas) (baWas)} is a one by one matrix. In Table 5.2 we compute
B= /&l 14 1, 0 /aWasbs , € = (1 4 IbaWasha, and C* = C/(T—
Fy(biky)?, where” k, is the adjustment factor for the first element of ya ,
F =G5+ K* and T = 21. In Table 5.3 we take uRasa and {I{/baWaaby!
ut(baWaa) (baWaa)} and compute

11H = IIRAA - - 11{(bAWAA)’(bAwAA)}-

[
baW asba
Then we compute (;,H)™", which in this particular case is the inverse of
a one by one matrix. This is called Fgg. One might define Fgs to have
G4 rows and columns, as many as there are elements of ya , but, since
the row and column corresponding to y, have zero elements throughout,
only G4 — 1 rows and columns are shown. We shall use the subscript g
only for vectors and matrices of order G* — 1. We next write down
(wP%+), which is Pis with the column corresponding to the first ele-
ment of ya deleted. Then we compute” Fay = Fag 1oPie, and then
P, = (wP3s)Fs,. Finally Mix is copied from Table 4.1 and F,, =
F' ., 4 M3} is computed. In Table 5.4 we compute

— 1
19 [—?ﬁ 1{:’] = )i Vs, ex) = V¥bs, e,
™ ry

12 7 _ Fis used, rather than 7', partly as an analogy to classical regression and
partly heuristically. See Chapter VI, footnote 58.
13 The subscript v will serve the same purpose 88 « .



246 H. CHERNOFF AND N, DIVINSKY fcrap. X

the estimate of the covariance matrix of the estimates of (82 v«] subject
to the normalization 8y = 1. In order to consider the covariances in-
volving e, we write down m’, which is the column vector of adjusted
means of the elements of ys and 2z« with the exception of the adjusted
mean of y2. We compute V*(ba , ¢s)-ym’/(5i”)°. This is a column which
gives —1/(bi”)" times the estimates of the covariances of the elements
of by and ¢ with . Finally, to get 1 /’(bfm)2 times the variance of e, we
comptte - V¥bs , ex) o’/ (b2} and C*/T” and add them together to
obtain V*(e)/(bi"). Then we write down [k 1], the vector of adjustment
factors of [ya 2+ 1]. Weuse this to deadjust the matrix V*(bs , ¢« , ),
multiplyving the general (z, j) term by the &, corresponding to the row and
by the k; corresponding to the column, and we finally obtain V*(bY’,
¢, g@y@orm

At this point we may add that i we had used a different definition for
the moment matrix our caleulation would be changed slightly. If our
moment matrix had been '

(15) M/T = 2 oz — (T 2 (30 =),

. the difference would arise only in C*/T°, which would be replaced by
C*/T. In both cases this result is equal to 1/T- > ur*/(T — F), where u}
is the computed residual in b{o’yfo) 4 - 4 & = u*. If our moment
matrix had been

(16) M/T* = (YD) L wem — (YT (X 2) (T2,
then C*/T* would be replaced by C*. Otherwise all caleulations would
be formally the same.

4. GRADIENT METHODS OF MAXIMIZATION!: 13

To compute the F.I1.D.,, FIN.D., and L.IS8. estimates of the pa-
rameters of a set of stochastic difference equations it is necessary to
maximize a function of many variables. Suppose that one is given a
continuous funetion f(a; , a2, * - - , @) that achieves 2 maximum at the
unknown point ey = @, @ = Gz, ' -+ , @, = @, . Consider the problem
of finding this point. One way is to set the partial derivatives of f equal
to zero and solve the resulting equations,

. g LR & £ -
an M:U (i =12 -, n).
da;
However, i f is a function of any complexity, the above equations may
be quite difficult to solve. An alternative procedure would be the follow-
ing iterative technique. It is known'® that, in a space with rectangular co-
14 See Koopmans, Rubin, and Leipnik [1950, Section 4}.
15 This section may be omitted at the first reading if it is found to be too difficuit.
16 Bee, e.g., Courant {1936, p. 89).



SEC. 4] COMPUTATION OF ESTIMATES 247

ordinates a; , - - - , @, in which the units of scale are the same along all
axes (with respect to some metric which will be discussed later), a fune-
tion increases most rapidly from a point ay in the direction given by the
vector [8f/3ay 8f/Ba; ---  &f/da.) ovaluated at ap. This vector is
sometimes called the gradient, or direction of stecpest ascent. Thus, if
one has an initial approximation {aw, a@s: --- awn] to the point
[a; @z --- a,], one may compute d; = #//da; | .« u.,; and then take

(18) - aay = am; + hel,,

where A, is a positive number. Compared o the initial point, this new
point 1s in the direction of steepest ascent and at a distance depending
on A1 . Thus the function has assumed » greater value at the new point
than at the original point, if &, is small enough and if not all d; = 0.
This procedure may be repeated bo give lapn - amal, logn
asal, ete. Under reasonable assumptions, there are numbers &; for which
the sequence of successive points fa -+ agnel will converge Lo
far -+ a.. From Figure 1 below, where contours eorresponding
1o several constant values of the Tunetion wre given, it is clear that if
too large a value of & 1s taken the value of the function will be decreased
(i.e., the step in the direction of the gradient will have been so large
that the top of the hill is overshot too mueh). Thus, it becomes evident
that one must exercise care in the choice of the h, . More details on the
choice of h; will follow later.

Let us investigate the concept of steepest ascent a little more care-
fully. Consider the two-dimensional case depicted in Figures 1 and 2. By
the direction of steepest ascent from a point wgq, one would ordinarily
mean the direction from e to that point on the circumference of a
small circle about aq at which the function reaches its highest value
(see Figure 2). Now in n-dimensional space, the equivalent of a circle
(called a hypersphere) is the locus of all points having a certain fixed
distance from a given point. One may define the distance between two
points lagy -+ amd, lewr + @ 0+ ama + @) by ok @)k
This distance formula defines the Euclidean metric. However, one may
weigh the values of & more heavily than the values of other e, , and
\/J + 2 4 & + -0 + mgy be used as the measure of distance,
Indeed, for any positive definite symmetric matrix U = || u;; ||, one may
consider

Vit
as the measure of “distance.” Then one may consider a small “hyper-
sphere,” that is, the locus of points at a fixed small “distanee” from
am 1 that metrie (an ellipsoid in the Euclidean metrie) and take the
point on the “hypersphere’ where the funection takes on its largest vadue.
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(For the case of two dimensions, see Figure 2. The dotted arrow repre-
sents the direction of steepest ascent with respect to a metric corre-
sponding to the ellipse about the initial point.) It can be shown that if
the metric is such that the ellipsoid about e, is similar to the approxi-
mately ellipsoidal contours about fa;- @z ---  @.] on which the function
is constant, then the ensuing direction is very close to that of the line
joining aw to far ---  aa. In general, if the metric associated with U
is used, the corresponding direction of steepest ascent is given by .

=t datj | a=agy),

where [u'] = U™\

i)

/)
Gradient” o
Frgoure 1
Suppose that the point [y a2 --- a.] is represented by the vector
o and that the mth approximation is awm = [em1 @m:z - &mnl.

The error of the mth approximation is defined by
(20) E(m) = Qm) — 4.

It can be shown' that there are n vectors ¢', v*, - - - , ¢" associated with
n positive numbers A; , Az, - - - , A, such that

ey =0 + ¢+ 07,
ew = (1 — Ao + (1 — hda)e® + -+ + (1 — k)"
(21) -+ higher-order terms,
em = (1 — kA1 — WAy + (3 — haA)(1 — hg)e?
+ -+ 4+ (1 = )1 — A" + higher-order terms,
¥ See Koopmans, Rubin, and Leipnik [1950, Sections 4.3.3 and 4.4.6).
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where Ay, hz, -+ -, as before, are the values h; associated with the first,
second, - - - iterations. Since the object of the method is Lo reduce the
errors, one should try to get values k; which make the (1 — A\
(L= her) - (1 =~ hmri), e =1, ,n,small. If A, , Az, - - - were known
it would be wise to take an oceasional b = 1/X, , an occasional b = 1/X.,
ete. The values of the A; depend on the matrix U. If {/ is redefined by
Uy = — a’jf/aa,-aa,- evaluated at @ = a, after each itoration, then the
A; are all approximately 1. In this case b = 1 is a very good value to
take. Then the errors are all small terms owing to the fact that third-
order terms have been omitted from the above formulae. When one is
not close to the point @, the third-order terms may be important, the
approximations in those formulae may be poor, and hence it may not
be wise to go through all the labor of computing [#*f/8a.0a,] M « = am
and inverting this matrix. One may instead take for ¢/ another matrix
which is not very difierent from the one above (i.c., the A, are still very
close to 1), but easier to compute. Furthermore, one need not. revise
the matrix U at each iteration.

5. VarIaBLES SubJuct To LiNkar RESTRICTIONS

In the F.ILD., FIN.D,, and LIS, methods the likelihood function
is a function of the unknown coefficients of all equations estimated.
Since frequently there are linear restrictions on those coefficients (e.g.,
some of them are zero, and the differences of some of them are zero},
a notation was developed to permit easy transition from a function of
many parameters that are subject to linear restrictions to a function of
a smalier number of “free” independent parameters that are subject to
no restrictions. This method will be illustrated with the particular
problem with which we are dealing.

In equations (1) and (2} of Model (a) we may use the three identities
to eliminate the three jointly dependent variables I, ¥, and € as follows:

C:=Y¢+T:"’I¢_(Ge+F¢)
Ct"=W1:+W2|+F¢+T:"'Zc+zg_1—(G."]LF.),
Yt+ft“Wzt=Wu+ﬂ+T¢-

Substituting the expressions for [,, Y,, C,, and Y, + . — Wy, in the
first three equations we obtain

Wu‘t‘ W24+‘KL+ Ty — Zz+ zt—l_‘ (Gt+ F:)
= g + am; + (Wi, + Wer) + agriy + wie,
(2211) Zg —_ Z;“,l = a4 + [+ {5 + [2 L Ay + aTZi—l. + YUz,

(22.9)
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(22-iii) Wu = ag + Ofs(Wu + e + T;) + ool
+ CEll(Yl—l + Ti—1 — Wz,;.b1) + Usg -

Let =, = e, Wi = ya, Z, = LT W = 2u, 7i0 = 2zZn, Zia
=zu, =g, o= 26, Ge+ Fo=zar, (Yeu+ 1 — War) = 27,
Then our equations become

(ar — Dyre + (o2 — Dyae + yo + (22 — 1)z
+ aszey — Z38 — 2o + 2er + ao + e = 0,
(23.11) asyu — Yu + aeza + (o7 + Dzar + ag + 2 = 0,
(23.ii) @y + (a0 — Llyee + aotar + ao2se + anzn + as + upe = 0.

(23.1)

In matrix form we may write
Az + vo + we = 0,
where
K4 2] Ys 21 2g 23 2 zs s 27

I‘a,—l ar—1 1 as~1 o -1 0 —11 ﬁ‘lyl
24) A=] a 0 -1 0 a ¥l 0 0 0 O jy

I_ as a—1 0 0 0 0 aw 9 0 a’uJ v

Yo = lan oy as), ue = (U Un us.

Let @ = vec A be defined as the row vector obtained by adjoining the

second row of A to the first and to this vector again adjoining the third
18
row:

a=[{ea = 1) (@—1}) 1 (ee— 1) o —1 0 —1
(25) 1 0 as 0 —1 0 a (x+1) 0 0 0 0
*g (aa — 1) 0 O 0 O oy O 0 anl.

The elements of this vector are linear combinations of the much smaller
number of components of a vector «*, and thus we may write a =a*®*.
There is some arbitrariness in the choice?® of a* and #*. However, a
convenient choice can easily be made, especially in this case where the
elements of each row of A are independent of those in the other rows.

18 This notation will be used in the remainder of this chapter. Thus vec A, where
A is a matrix, will denote the vector obtained by adjoining the second row of A
to the first row, etc.; vecA = [an -+ @t am -+ G - Gar - Gonl

19 §* ig the basic matrix discussed in Koopmans, Rubin, and Leipnik (1950,
pp. 160-166; especially p. 164].
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Let af = o — l,a; = — 1, as = I,ai=a3,anda1=
[ai b o ai). Then the first row of A is given by
6.0 g — 1) {@—1} 1 (ez—1) g —1 0 —1 1 0

i
=on oa: ai oi®:,
where &, is illustrated in Table 7.1

Let af = as, as = -1, a"; = o, oy = a; + 1, and & =
[oi @i a3 ai]. Then the second row of A is given by

[(150 —-10(!; (a;—I—I)OOOO]

(26.11)
2 3 2 9 %
=loi a: a3 o ¥z,
2 . .
where &. is as in Table 7.1.
3 3 3 3 3 T3 3 3
letay =g, a0 = 1,03 = ap,as =ay,anda = oy az a3 ad.

Then the third row of A is given by

(26] [a9 ((19— 1) 0 0 0 0 aw a 0 C!”]
ity

= loi @i af ail ®2,
where again @ is as in Table 7.1. Finally, let

(27) a* = [ o

(28) o =

Then a = o*d*,

The guiding principle of selecting the elements of &', o®, and o is to
take elements that are independent. Thus the first row had originally
the three independent coefficients, a; , a2, oz, and 1. If it had not been
slightly more convenient to do otherwise, we might have let a; = ay,
ar = az, a3 = ay, and @y = 1. Once o' is given, &, is thereby determined.
The reader is invited to check this by constructing &. for the alternative
choice of a' just mentioned.

Each of the @i ({ = 1, 2, 3) has 4 rows. This is due to the special
circumstance that for this particular system of equations each row of A
depended on exactly three o’s and the constant 1. It is not necessary
for the development which follows that all the ¢} have the same number
of rows.

At times it will be important to consider the vectors o', of, o’, and o*
without the elements aj, a3, and a3, for these may be considered as
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fixed and not variable. (They are sometimes called normalizing elements. )
To this end we can use the notation

o = a1 ab ai,

©9) = [af o3 ai),

= [al dg C!'Z],

where the left subscript ¢ denotes that the normalized elements are
omitted.

Similarly, ¢@* will denote the matrix & with the rows corresponding
to the normalized elements omitted. These are the third, sixth, and tenth
rows. If ag, and a¢ are two estimates of the vector «, their elements
are subject to the same linear restrictions. Thus aq) = afiy®*, aw =

* xd
a;nd™, s0

(30} d=ay — ¢z = (a'(",; — a:'g,)@* = d*p*,

Now d* = afi, — afy has zeros in the positions corresponding to the
normalized elements, so that d = od*- &®*. In other words, the difference
of two estimates of A can be expressed without the use of the normalized
elements, because only nine of the twelve elements of a* are variables.

6. MarurMarical, CoxsipEraTioNs CONCERNING THE FuLL-
InForRMATION METHOD IN THE NONDIAGONAL Casg?

In the F.I.N.I}). method (where no restrictions are imposed on the co-
variance matrix) the logarithmic likelihood function is given by

(31) LY(A) = const. + log | det B| — % log det S(a),

where S(A) = AM.,A” and where A = [B T is the matrix of coefficients
to be estimated, while the likelihood function has already been maxi-
mized with respect to the matrix of the covariances of the disturbances,
=. This function may be compared with that represented in (5.58)
of Chapter VI, from which it differs only with respect to the definition
of moments used. For this reason, the maximum-likelihood estimate of
2 computed from the maximum-likelihood estimate 4 of A is not S(4),
but is given by (1/T7%)8§(4) = S as defined in Chapter VI, equation
(5.59}.

To maximize L"(A) with respect to variations in the elements of A

20 This section may be omitted at the first reading if it is found to be too difficult.
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(subject to restrictions) we consider the Taylor expansion of L(A),
which has been derived elsewhere,” as follows:™™
L™(A, + hAAy) = log | det By | — % log det S,
+ h {tr (By'ABY) — tr (87 AuM..AA0))
(32) + B 4 {— (BiT'ABY)
+ 5 (AoM.AA] + (AAQ) T .. A3) S5 AoB.AA;
— SAA) T 844} + O(R).

The symbol A, represents an initial approximation to the adjusted pa-

rameter matrix A, and §; = AM .. o . The direct product C @ F of C

and E (right direct product as defined in MacDuffee [1933, p. 81]), which

are square matrices of order m and =, respectively, is a square matrix

of order mn, with one block for each element of €. The ijth block is the
“4jth element of ¢ times K i.e.,

cull ¢l .- CmEl
C®E = cnll eml - el

Fcuen e C1i€in Cmfun  "°°  Cimfin
Cuénr -+ Ci11€2a . Cim€1z " **  Cimfin
C116n1 . €11€an Cim€nl reT Crinfan
Cm1211 e Cnfle Cinm €11 *t Com€in

__cmlenl T Co1Cnn Cnmb€inl =t cmw-enn_

21 Sep Koopmans, Rubin, and Leipnik [1950, equation {4.207)].

2 For the definition of the trace tr C of a squure matrix (', see Chapter VI,
Section 5.4, equation (5.27).

23 We use the subseript zero to denote the arbitrary values 4y, By, So, of the
parameters A, B, £ = 7 Z on which this expansion is based. Depending on the
context, these values may stand either for initial or subsequent trial values in
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Expression (32) can also be written as

L¥(Ay + hAA) = log | det By | — 1 log det S,

+ h {vec [Be7 0,.1(e2*) — ar@* (5o’ ® M ) {a®*) ) (ed*)
+ 31 {od* eald™* - (ad*)'} + ORY),

where L3 is the matrix L** of the second partial derivatives of the
logarithmie likelihood function,” evaluated at the point A = A, , and
where d* corresponds to A4, in the same way that a corresponds to A, .
The computation of this matrix for any given value of A will be examined
later. Tt has also been shown that the ijth element of S, is given by™
(a3) V7 (ad)’, where

(34) V< (DM .(3D).

33)

The direction of steepest ascent is given by ed* = an*(ealU**) ",
where™

(35) on* = vec [(B1)" 0,.)(ed*) — ao*(5'@M.)(ed*)

and where geU** is determined by the concept of distance adopted.
There are three very useful definitions of I7** that were developed for
this problem. One is U** = P** where P** = o%(5 @M. )d*;
the gradient method associated with P** is called the ®, method.
Another method 15 the . method, where U** = R** with R** made
up of blocks R*” = 8 N and

(36) NP — SIM, M7 M. @)

The third is the £, or Newton method, where U** = —L**,

iterative approximations to the maximum-likelihood estimates 4, B, &, or for
those estimates themselves, or (in general reasoning) for an arbitrary set of raram-
eter values. (See also footnote 29 helow.)

The notaticn 0(k®) indicates that the remainder in the expansion is of third
order in k (i.e., that there is a constant K such that the remainder is ¢ Kk* for h
sufficiently small. For the definition of ‘“vec,’” see footnote 18.

21 The matrix L** = [§2LV{A)/d({vee A)?] should not be confused with the likeli-
hood funetion itself, which will always be written with its argument A attached.

* The elements of the inverse of a matrix are denoted by superscripts with a
lower case letter. A block corresponding to a; and aj is denoted by a capital
letter with superseripts (4, J).

2 The matrix 0,, is simply & matrix of @ rows and K columns, each of whose
elements is zero.
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7. CoMpPUTATIONS IN THE FULL-INFORMATION METHOD IN THE
NonpiaconaL Case?

A number of computations must be carried out once and for all in
order to be used for the successive iterations. As in L.I.S.E., we must
construct the time series for the moment matrix A2 and t.he adjusted
moment matrix M$ or M., . Slight differences may arise in that some
variables that are convenient in LI.8.E, are not needed in F.LN.D.
For example, ¢ is used in 1.I.S.E. but was eliminated in setting up
FIN.D, Specifying

= ¥ ¥a @ 2z - #H
= ['ﬁ' iVl VA '”,T2 - | Z__l [ (GY + F) (Y + T — I’Vg)ﬁ1

we proceed as in the L.LS.E. method to abtain the adjusted moment
matrix M’ (Tables 1 and 2). Also, as in the L.I.8.F. method, 3,752 5.,
Mv.uzM;lezu M‘.Ul]

Mzu Maz
Table 6 contains M., and M..M;'M.., although in computing they
would usually end up on different pages.

‘Table 7 illustrates the & and the computation of ®:#,, and
G M, M7 M... This computation is quite simple and consists mostly
of copying elements of M, and M. M ;) M.. because most of the rows
of the ®’s contain a single 1, all other elements being zero.

In Tables 8.1 and 8.2

is computed. Use is made of M, M) M., = {

(37) V{t 1% Q’: n(@i)r
and
(38) N — oI M. MM, (30

are computed.” This again is as simple as the above caleulations, and
the sum row of ¢ is used as the sum column of ¢ in checking. The ma-
trices V'” and N*"*? are described as “reduced” (by the basic matrices

* Bections 3, 7, 9, and 11 of this chapter give computations on two related
models. These computations were not carried out independently, but are con-
nected as follows: Two separate estimates by the L.1.S.E. method are given—a
very crude one given as A in Table 28, and a more refined one using ten iter-
ations, given on p. 258. The former was used as &n initial approximation for the
F.I.D. computations summarized in Table 28. The latter was used as an initial
approximation for the L.1.8. computations surmumarized in Tabje 21. Finally, the
F.ID. estimate B of Table 27 (B, of Table 28) was used as an initial approxi-
mation for the F.I.N.D. computations summarized in Table 11.

2% One must keep in mind that superseripts in parentheses on capital letters
designate blocks and not elements of the inverse.
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&%), the matrices ®LM ., and & M,. M7} M., are called “semireduced.” 1t
should be noted that, since V*" = (V*®) it is necessary only to com-
pute VU peR pas ped oy and VP, For sum checking the
computation of these V’s, the sum of each column of each ¥V is useful.
However, for later work one can make good use of the sum of each row.
(For VY, v¢2 yv&9 the sum of the rows is equal to the sum of the
columns by symmetry.) Also, for many calculations eeV'"? is needed
instead of V*'?. We observe here that the sum of all the elements in
this submatrix is formed and will be found useful. N*” is obtained and
treated in the same fashion. It should be pointed out once more that all
these blocks are 4 by 4 blocks only by accident. In general, the (i, 7)th
block has as many rows as there are parameters in the ith equation
and as many columns as there are parameters in the jth equation.

We may now proceed with the iterations. The process of obtaining
gn* is the same for all of the methods. In Table 9 we illustrate the com-
putation of gn* in the first iteration. The initial approximation would
normally be derived from the L.I.S.E. estimates. In this case, however,
F.I.D. estimates had already been obtained (see Table 28), and these
were used as the initial approximation. Thus the components of Bs; of
Table 28 are the components of a%, of Table 11. First®

(39) pl = a'V®?

is computed with check sums. It will soon be found useful to obtain the
sum row pi = pi + pi + p}. In this computation p3 = ¢’¥*" is com-
puted by cumulating products of elements of a® with those of the rows
of V" for the columns of V®" are the rows of V7.

Next the matrix S = [3,;] is computed, where

(40) §ij — aiVﬁ.j}(aJ')r — p’.:(aj)’.

Since S is symmetric it is not necessary to obtain the terms below the
main diagonal. This computation is checked by pi(a®)’ = &1 + 3u + &
= &y + & + §u. Adding 1 to this we obtain a guantity which checks
with the sum of the first row of the Doolittle work done on S in Table 9.
We then invert S to get 8 = {5”]. Incidentally, we compute det § by
multiplying the top terms on the main diagonal of the forward solution;
that is, 10"-det § = (0.463675)(0.453154)(0.108059) = 0.022705. The
next step is to construct B, which is the first square part of A = [B ()],
which in turn is completely characterized by @ = vec A = ¢*®*. The
first row of A is 0’8} . Thus the first row of B is ¢'®} . The second row of
B is a’#] | ete. Thus

* For simplicity we have omitted in equations (39)-(44) subscripts (0) indicat-
ing the iterations to which the quantities o, 3;; , B, ete., refer.
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(41) B’ = {(d'8,)’ (d')) (a'8))].

Having constructed B, we obtain (see footnote 3) the inverse B~

[6*] and check it. thle the inversion may be performed by the Doohttle
procedure, in this particular case B is so simple that it is convenient to

find the determinant and adjoint of B and thence find the inverse.
Now we compute

1 -11 T =12 1 =13 1
m = 1+ § Dz + 3 5 Ps,

(42) m' = §'p] + §7ps + §7p},

3 =31 3 =32 3

m =35p + 5ps 4+ 5 pa
Actually only gm* = [gm' om’ om]is required. Then we compute
(43) I''= [@i(B™).} (G=12323).

That is, l , for example, is the transpose of the vector obtained by multi-
plying &, mto the first column of B7". Here again only [¢f' & ] is
required. Finally, gn* = g* — gm™*.

It now remains to compute P**, R** or L** as the case may be.
Since the only difference between P** and R** lies in the use of V** or
N**_ respectively, we shall use R** as the illustration in Table 10. We
compute E** by

(8.0) __ zidar(i N
R = g¥NY

multiplying the blocks of N** by the corresponding element of S
Again we omit the rows and columns corresponding to the normalized
parameters. We write (gn*)’ next to ¢eR** in preparing the inversion.
The sum column is written out and it should check in this fashion, where
“(sum of N*?)” stands for the sum of all elements in the matrix N7
'3 (sum of NUP) + 107'5" (sum of Ny + 107'5* (sum of N 3’)
+ the sum of the elements of gn' [which is equal to (4.314815)(7.716584)
+ (—2.153116){4.859279) + (4.211728)(11.805756) + 2.375189] must
be equal to ten times the sum of the first three rows, 10(1.700770 +
4.158856 + 1.633460). Similarly 1075 (sum of N®V) 4+ 107"-5% (sum
of N¥?) + 107" (sum of N®) —|- the sum of the clements of gn'
[which is equal to (—2.153116)(4.859279) 4+ (3.26373G)(6.337798) +
(~-3.127532}(8.615121) - (—2.28(249)) must be equal to ten times the
suin of the fourth, fifth, and sixth rows, 10(—0.971591 — 0.757835 —
0.171373). The final three rows are checked in the same fashion, and
then the Doolittle method is applied to get

(44) (6d*) = (saB**) ' (an*)'.
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This gd* gives the direction of steepest ascent with respect to the measure
of distance given by gsR** in the nine-dimensional space of unrestricted
parameters.” Since the computation and inversion of geR** consumes
much time, we may modify the ®: method by using the same gaR**
for several iterations instead of recomputing it with the new estimate
of A4 after each iteration. (A similar remark applies to the £, and @,
methods.)

Table 11 gives sectlons of the summary page of the iterations. The
initial approximation e, is listed. Then det B, det 5, and (det B)’/det
S, respectively, are listed and calculated. Slnce L“}(A) = constant
+1 log {(det B)*/det AM_.A"}, L™(A) will attain a maximum when the
function in braces does so. Then df, islisted, and finally a value of A =
ki is obtained to determine the length of the step in the appropriate
direction. Thus, afi, = af, + hd, - It will be noted that iterations 1, 2,
and 3 make use of the same B** that was computed in Table 10. The last
few (except the very last) iterations use the same L**,

The problem of choosing the h; may be clarified by the following con-
siderations. For the &, and £, methods, if we have a large sample and a
maodel which is “good” in that the restrietions imposed by it are actually
satisfied by the “true’ structure, then h; = 1 can be shown to have
very good properties. For the @, method, h; = 1 in conjunction with &’s
greater than one are to be used (again assuming we have a large sample).
Because we seldom have a large sample it is well to start with an & < 1
(undershooting). Then several iterations with A increasing may be taken.
Note that in the fifth iteration, where the second R** is used, the ratio
of the elements of d%, to those of df, is very roughly about . This
indicates that the last xalue of k (i.e., hy) was only about ¥ as large as
it should be. Thus k; = 2 was used next, The k;'s were not all chosen in
this fashion. After a large h is used it is best to use small h’s again, for
a large & will tend to overshoot considerably in several directions while
a subsequent small ; will diminish the errors (i.e., the differences between
the approximation and the maximizing value) in these directions.

The £, method is peculiar in that the eloser one is to the maximum,
the better effect values of k close to one have. Indeed, convergence is quite
rapid if the remaining distance from the maximum is small. On the
other hand, if that distance is large, the £, method has a certain amount
of instability and is, in view of its expensiveness, not desirable. Thus
a recommended method would be to start with the relatively stable @,
method for several iterations, then to switch to the ®: method for more
iterations, and finally to use the £, method. In all of these cases it usually

3 If the , methed were used, we would compute P** by PG.? = 57V 0.0 and
then (ed*)’ = (s P**)~(en*)’. This ed* would give the direction of steepest aseent
with respect to another measure of distance, namely, ssP**.
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pays to use a given F** B** or L** for several itorations without recal-
culation. Finally if the d* for an iteration is approximately in the same
direction as for the preceding iteration, one may use the method deseribed
in the last paragraph to select a good value of .

When the final approximation to A is obtained, it is deadjusted just
as in the L.I.S.E. method.

The computation of L** is relatively complicated, but necessary, at
the end of the iterative process, for the estimates of the variances and
covariances of the estimates of the parameters wre given by
(1/TY —aal**)"" evaluated at the final approximation to . Tables 12
and 13 illustrate the computation of L** evaluated at the initial ap-
proximation. Then, using this L**, we compute in Table 1.1, for use in
the £, method,

, (ad*) = (~gal**)  (en*)'.
To get the estimates of the covariances we evaluate £%% at {he final
approximation and then fake (1/7)(—ael**) ™. This is done in Table
14.2.

It can be shown that the needed positive-definite symmetric ma-

trix — L** can be decomposed into a sum of four symmetric matrices,
ol Za i Pl B AL A R R AN T
W) =B, =X, 6= GV
n n

Then _ o

LD = (e,
(46) L = (5 (1),

PGS gt

D Gt

b

where (c})’ is the jth column of C,f;_ and finally — L**is computed. In
the tables we actually computed 6C; , 260" a0 L7, ee LY 9o’ L7,
and gg°L"?, and so computed — L **, but presubseripts g have been

omitted from the tables where no misunderstanding can arise. The co-
variances are now deadjusted as in the L.I.S.E. method.

8. MatHEMATICAL CONsSIDERATIONS CONCERNING THE LIMITED-
InvormarioNn Sussystim MersHOD

In the L.1.8. method the logarithmic likelihood function is given by™

det Ap M. Ay

det Br W By’

3 The likelihood function (47) is obtained from that given in Chapter VI,
Section 8.1, equatien (6.3), by substituting A7., for M and W.. for W, and absorbing
in the constant all terms not dependent on parzmeters.

(47) L® (A = const. — Llog
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where

- Ww 0 i o T ar—! i
W = 0 ol Wy = -B'IWI b Mua M., sz

Ar = [By T4] is the matrix of coefficients in the subsystem, and we

have
Ay By In
A= = .
Agr By T'm

For a complete system, A1 = A,Br = B issquare and hence det (B:W,,B1)
= (det B)’ det W,, , and W, is constant with respect to the parameters.
Thus, for a complete system,

L®(A1) = L®(A) = const. + log | det B | —2 log det S(A).
In the following we use
SI I = A!Mz:A; ) Tiy = A[WLZA; -

Expanding L® (A1, + kAA1q) in a Taylor series, we have, suppressing
the subseript zero on the right-hand side (although A;, S;:, and Ty
are to be evaluated at 4; = A;,),

L” A1y + hAAr,) = const. + § Iog det Tyy — % log det Si¢
+ htr {(TT1 A1 W.. — Br1 A1 M..) Adq}
+ 3% tr ((TTHAADW.. — Sr,(AAI)Mu)AAi
— T71((6AD W A1 + A1 Wa AAY) Ti14: W Adr
+ SN (8AD) Mo At + Ar Moo AAY) 803 Ay M. AAY)
+ O(#%),
which can also be written
L™(Ayo + haArg) = const. 4+ 1 log det Tyr — & log det Sr
(49) + h{af®*(T71 ® W.o)(eP*) — afd*(S11 © M) (ad*)} (ad*)
+ 18 ad* - gald™ - (ad*) + O(hY),

(48)

where L¥* = [m will be examined later. Also
¢ d(vec A2 Ay = Azo aver. 2580
(50) E,',‘ — ai-V(l'..f),(a.i)f’ L = ai'Z(l'.J')(aJ').’

where
V("IJ) = @iﬂ';z(@i)’, Z(‘IJ) = Q;sz(éi)’
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The direction of steepest ascent is given by eod* = gn*(eel**)™,
where

(51)  on* = afd*(T1i ® W..)(e®*) — add*(S71 ® M..)(ad*)".

eal/** is determined by the concept of distance adopted. Two useful
methods called the ®, and £, methods have been used. In the ®, method,
U** = R** a5 defined in the F.I.N.D. case, except that the superscripts
i, j in 3N“" assume values corresponding to the equations in the sub-
system only. In the £, method, U** = -~ L**

9. CoMPUTATIONS IN THE LIMITED-INFORMATION SUBSYSTEM METHOD

Here we shall treat Model (b), in which the three equations form a
subsystem of a complete system. [See (1) and (2).] The LIB.E. esti-
mates have been obtained and are

a = 16.038869, a, = 25.780463, ag = 1.726865,
(52) a = (.062699, as = —0.022994, a2 = 0.395823,
a2 = (.824882, ag = 0.764704, aw = 0.140874,
a; = 0.163679, a; = —0.181972, ay = 0.187339.

These equations have been transformed (see Section 5), by eliminating
three jointly dependent variables in the identities, to

(533) air + axWi + a3Z + caWe + agr_y — aaZ 3 + a3(G + F)
— oz +a+ wm =0,
(53.1) ar + 32 + atma + aiZy + o + u = 0,
(53, air + (af — ed)Wi + ot + air + olT + + — Wa)
+ o + uy = 0,
where the a) are defined as in equations (26.1), (26.ii), (26.iii). Using
the L.I.S.E. estimates for our initial approximation we have

a* =[ay a: ay ay a ai af di ai a@ a3 ai
(54) = [—0.937300 —0.175117 1 0.163679 —0.022994 —1

0.764704 0.818027 0.395823 1 0.140874 (.187339].

The jointly dependent variables are

(55.i) h = m Y = FV], Wy = Z, W= U= ¢ + F'
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The predetermined variables are
21 = [, ,ZZ = r, 23 = Z_1 s

(55.ii)
=Y+ r— Wi, 2= W,.

Thus the & matrices are as in Table 15. The reader should note that these
are obtained from the ¢ matrices in the F.I.N.D. case of Model (a) by
mere rearrangement of columns and relabeling of variables.

Here again certain matrices to be used in the iterations must be cal-
culated. We obtain M,. (Table 16.1), which is a rearrangement, of M.,
in F.IN.D. of Model (a). Then we compute M,.M;, M., (Table 16.1)
and W,, = M,, — M,.M;}M,, (Table 16.2) exactly as in the L.I.S.E.
method except that a few of our y's are slightly different in this case.™

Then ®iM,, and &,W,, are computed in Table 17. In Table 18 we
compute

V(i.ﬂ q_, M;z((p )r
(56) Z“.ﬂ = q’ﬂWw@’;)':
NED = v — 260 = (@l M M) @)
Table 19 shows the computation of »*. First our approximation a* is
listed. Then we compute, in the following order,”
pi = g v
K = 'zt
(57) 5= a' VP (a) = pila?),
t; = @' 297 (@) = ki@,
3
n' = 3 (O — ),
Il
where [§Y] = 8§ and ) = 77"
In the ®, method we use again
[Jhx — Pk [R(ivJ')] = [gl’:’N(l’.i)]-
Table 20 illustrates the computation of geR** and ed* = (en*)(saR**) .
Table 21 illustrates the summary sheet.

2In LIS.E. they'swere C, =, W, -+ W, I, W, ,and Y + + — W, , while here
the y'sarex, W,,2,r,G 4+ F.

¥ As an example of the sum checking of § and T we have (—0.937300}

(—0.175847) + (—0.175117)(—0.131555) + (1.0)(—0.139781) + (0.163679)
- (—0.008300) + 1 = 1.046719.
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The ®» and £ methods in L.I.S. are analogous in their properties
to ®s and £, in FIN.D. Again £, is rather difficult to apply because
L>* is complicated, but again £; converges better than G when near the
maximum, '

As before, when the final approximation is obtained it is deadjusted
as in the L.I.S.E. method.

To find L** we compute, in the order given,

(58) fi= 25", gl = X ™ k%;
(59) GU? = WA, HY? = 3 &Y ks
'L = (gD gl — (DT
(60) ELU.J') — tij(z(i.ﬂ _ H(".i))’
3L(l'.:') . éij(V(i.J”) _ G(i.j)),
(61) — L** =L Y,

Here again the matrix of the estimated covariances of the estimates of
the parameters is given by (1/7T)(—gel**)™".

The fact that only gel** is necessary introduces considerable saving
in the computations illustrated in Tables 22, 23, and 24. In Table 24.1
we also computed (ad*)’ = (—gal**) (gn*)’. In Table 24.2 we com-
puted (1/7)(—eel**) evaluated at the last estimate, which is the esti-
mate of the covariances of the estimates of the parameters. This is now
deadjusted as in the LIS.E. method.

10. MaTuHEMATICAL CoONSIDERATIONS (CONCERNING THE FULL-
INFoRMATION METHOD IN THE Diagowan Casge

The full-information diagonal method is applicable to the case in which
the matrix of the ecovariances of the residuals is known or assumed to be
a diagonal matrix (ie., disturbances in different equations are uncor-
related). It may be expected that, if this is approximately true, the
FID. method would give results that have only a small bias. The
advantage of the F.I.D. method is that less work is required per iteration
than in the F.IN.D. meihod. Indeed, the matrix UU**, which corre-
sponds to P** in this case, consists only of small diagonal blocks, with
zeros elsewhere.

In treating the F.I.D. case a different normalization is found to be
convenient. The original likelihood function in both F.I.D. and FIN.D.
i1s & function of the coefficients A and of the covariance matrix I,
L = L(A, Z). In F.LN.D. it was found to be convenient to maximize
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first with respect to the covariance matrix. This gives the estimated
covariance matrix S(A)/T® = AM,.A’/T" as a function of the coefficients
alone, Since the likelihood function is unaltered by multiplying all the
coefficients of an equation by some constant, one may normalize by
setting a given coeflicient of each equation equal to a fixed number.

In the F.I.D. case the covarianee matrix has one element for each row.
If a row is multiplied by a constant, the likelihood function is unaltered
and the corresponding element of the covariance matrix is multiplied by
the square of the constant. Here we may proceed as in the FIN.D.
case, but it is more convenient to normalize by fixing the elements of the
covariance matrix. Let us fix them at chosen numbers oy, i.e.,

on O 0

0 om -+ O
(62) T = =

0 0 e ggc |

In our example we choose oy = o = o33 = 1/T" It will be convenient
‘to use £ = T°F as a parameter corresponding to S(4), which gives us
= Gog = o3 = 1.

Then the parameters which were formerly fixed by normalizations
(i.e., a3, a1, and a3} are now free parameters, and the likelihood func-
tion ean be shown to be given by

L{A) = log | det B| — % tr (Z7'AM..A")
log|det B | — % tr {Z7'(4)].

It can be seen that 3;; = &, when the maximum is attained. I't is wise then
to modify all approximations used as initial values in iterative methods
by multiplying each row by a constant, which makes §,; = &, . Again
we obtain the Taylor expansion:

L(4o + haAg) = log | det By | — & tr (278
+ ki tr (B ABy) — tr (37" Ao M. A40)}
+ 3 Kt (B~ (ABS) By AB;) + tr (T7 (40 M. A430)} + OR).
And, in more convenient form, this is
LAy + hAAy) = log | det By | — 3 tr (E7'5)
(64) + hivec [By 0,.8* — afo* (27 @ M..)d*}d*
+ LRA*LA*EX -+ O(hY).

The direction of steepest ascent is given by d* = n*(U**)™, where

(63)
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(85) n* = vee [Be ' 0,J0% — ofd*(E7 @ Mo

and U** defines the measure of distance. The ®, method in the F.L.D.
case is the gradient method given by

&HV(I.I) O e 0
0 SVEY ... 0
(66) [Th* = Phk o . ' )
0 ¢ .- e
where ¢ = 1/6; and 67 = 0 if ¢ # 7, and, as before, VO =

(@2 M .(®2)’". The main simplicity of this method is that (P**)™ may be
evaluated once and for all; it is a constant matrix and very easy
to invert:*

gV~ 0
67) (P™' = 0 an(VED™T L 0
0 0 e GV

Indeed, if this method is applied, we have, omitting subscripts 0 from
here on,

(68) n* = vec [B'™' 0, 8% — a*P**
and
(69) d* = n*(P**) ™ = vec [B'™' 0,.J(@*) (P**)™ — a*;

ie., we may evaluate in one step a* + d* = vec [By™' 0, ]J@* (P**)™"
= [*F(P**)7),
One may simplify even on this, since

(70)  a+d = (a* + d¥)P* = vec [B' 0,.J0%(P**) " -o*.

Let
1) I = @)V o))
and (4 + Ad), = (B or

(72) aiz + (A4)i: = ; a* gy,

3 One must keep in mind that 5, (V1.1)! ig a diagonal block of (P**)™1, not in
general a single element. A similar statement, holds for other capital letters with
superseripts.
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where J{ is the kth row of J”. Now in successive iterations the only
nonconstant terms that appear are the elements of B; only (B + AB)
need be calculated from iteration to iteration until the last step, and only
then do we want the complete (4 + AA). '

In the F.I.D. case the Newton method (£,) consists again of using
x% = —L**, d* = n*(U**)“. :

11. CoMpyuTATIONS IN THE PFULL-INFORMATION METHOD IN THE
DiagoNarL Casge

The F.I.D. computation will be illustrated in Model (a). We use
vl yeE2 and V&P which were obtained previously (see Table 8.1),
and compute s (V3) ™, a2(VE?)™ and a(VPP) ™, (See Table 25.)
Then in Table 26 we compute J° = (@) 5.(V"")7(®:), where the
&: are taken from Table 7.1.

Ordinarily the original approximation would be obtained from
LIS.E. estimates, but because of previous computation on a slightly
different model the original approximation was obtained otherwise.

Applying the @, method we start with our original approximation A .
We take only B, and compute (Bw) ™. Then we compute

(73) ABwy = (Bwy)adey — Boaw (G =1,---,@).

That is, the sth row of ABy, is obtained by multiplying the 7th column
of BG, (or ith row of Bga,) by the columns of J& and subtracting
the 7th row of By, . In this manner we obtain ABg, , and the next ap-
proximation to B is given by By = By + mABg . We continue in this
fashion to obtain Byy = By + h.1AB_yy until the contribution
of AB(_y, is negligible. Then for the last iteration we compute Bin
and get

(74) Ay = A + A,
where
(75) Ay = (B)ad? =12 --,0.

Then A4y is our final approximation to A. This is done in Table 27,
and the suceessive iterates B(,, are shown (in part) in Table 28.*° Again
the final approximation is deadjusted as in the L.LS.E. method.

Using the terminoclogy of Section 4, it was normalized by making
¢ = 1. This is convenient (but not necessary) as long as the h;’s are

35 T'able 28 shows results obtained by suceessive approximations to the column
vector {{e1 — 1) (a2 — 1) as ao]. Substituting these values in (22.1)-(22.ii),
we obtain the equations on page 68 of Klein [1950] insofar as endogenous variables
are concerned.
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taken to be less than one. It is just as convenient to do something else,
such as normalizing after each iteration by dividing each row of the
approximation by a scale factor to make§,; = &,;. Making §,; = &, in
this way would be necessary if A; = 1 were used for every 7.

It can be shown that all the A’s are between 0 and 2, and so to minimize
[ 1 -~ Xk |it is wise to use h; > }. Also, in order not to overshoot, it is
wise to take h; < 1. Taking h; < 1 for every 7 insures convergence for
large samples in the @, method for this case.

In the F.I.D. case it is also pussible to use the Newton method, where
[** = — L** d* = n*(— L**) " and — L** = 'L** 4 L** 0Of course,
if we use this method »* must be computed and a good many of the short
cuts of @, in F.I.D. must he abandoned.

The vector »* is computed very much as in the F.I.N.D. method. One
computes

(76) B = [2'9) (d'®) (d'®))],

B and t* = [I' I 1Y), where

(77) U= [oB™ (i=1,23)
as in formulae (41) and (43). Then we find m* = {m' m* m’], where
(78) m' = a'(@’v"?),

Then n* = [* — m* and d* = n*(—L*) " are computed. To compute
— L** we need

(79) ¢, = ®B7,
(80) 'LE? = (&)ed,
where (c})’ is the jth column of Cj, and
(81) 2L(l',j) — a_ijV(".J‘)’

where ¢ = 1/6,if¢ = 7, &7 = 0if 4 £ j. Then —I** = 'L** 4 *[**.
This computation resembles that of — L** in the F.I.N.D. case, but it is
considerably simpler. An example is given in Tables 29 and 30. Again
(1/T)(—L**)™" is the matrix of the cstimates of the covariances of the
estimates of the parameters, This is deadjusted as in the L.L.S.E. method.
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ApPENDIX 1

L.I.S.E. METHOD, det Ras = 0

If Raa is singular, as will happen when K** = & — 1, then I} = 0 and s0 b, is
a solution of the equation

(82) Rusba = 0.

Since &' may be multiplied by a nonvamshmg scalar, we may fix b, = 1. Thus
we must solveds

(RBas) (b2 + 1Bax = 0,
where ba = [1  1b.], by
bh = — {(uRas) 1B m).

To obtain this we write down Raa except for the first row and column; next to it we
write down the first column except for the first element; we apply the Doolittle
method and so obtain —b4, and then b, = [1 b4

APPENDIX 2

L.ILS.E. METHOD, NO ELEMENTS OF 2*

If there are no z*'s, the procedure is the same except that P}; and Ma M7 Mas
are not computed, and

{83) Rus = Mo MM .

APPENDIX 3

TO OBTAIN ESTIMATED COVARIANCES OF THE ESTIMATES OF THE
PARAMETERS INCLUDING THE CONSTANTS

In the F.IN.D., F.I.D,, and L.L8. methods, a method was described for esti-
mating the covariances of the estimates of the parameters. In each of these cages
the constants were ignored. If it is desired to compute the estimates of the covari-
ances of the estimates of the constants also, the problem is slightly more compli-
cated since the likelihood function depends on more parameters.

Consider the F.ILN.D. method. The estimates e of eare givenby¥ Am’ + ¢’ = @G,
where m is the vector of the means of z = {y 2] (and is therefore not related to
m* = fm! m? m3] above). Consider the matrix

% Ba represents the first column of Ras with the first element deleted.
¥ See also Chapter VI, Section 5.6.
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_Lt* + Sp % Li
(s4) ~-L= [ _ “ 1,
A Ly
where
SLUA = sfi(bims) (mal)’, Ly = (®;m)s%, Ly = 87, 8= —3.

7
Then (1/T){—L)"! is the estimate of the covariance matrix of the estimates
[a* el

To invert the partitioned matrix (— L), we may use methods given by Hotelling
[1943, p. 4] or Frazer, Duncan, and Collar {1938, pp. 112-118]. The result is

(85) (—L)"‘[ e e }
" Lowya g nady-oeenig

For the F.I.D. method the procedure is the same except that #¢/ is replaced
everywhere by

f -t

¢if = 1/o;; when 1 = j, a'i = 0 when ¢ # j, g =

&
HH

[
Y

In the L.1.S. case the method is the same as in the F.I.N.D. case.






APPENDIX 4

SAMPLE COMPUTATIONS FOR MAXIMUM-LIKELIHOOD ESTIMATION

1.1.*
1.2.

2.

3.
4,
3.
G.*
7.1
7.2
8.1
8.2
9.

10.

11.

12,

13.

14,

15.

16.1
16.2
17.*

18.

Time Series for Variables

Computation of Moments E’E;) for L.I.S.E. Method -.ovicoee e,
Adjusted Variables and Adjusted Moment Matrix M,

L.L.S.E.: Estimation of the Coefficients of Equation (2),

B;)u + B,y, + Y17 + YaZ b € = U e

Sampling Covariances of the L.I.S.E. Estimated Coefficients ...
Moment Matrix M . and Matrix szMzzsz

F.I.N.D.: Basic Matnces (IJ‘ .
F.IN.D.: "*Semireduced’’ Matrlccs (I’ M' and ‘D‘M M"M ......

X XZ ZTZ zX

F.L.N.D.: Reduced Moment Matrices V("’) = (I); ((D’)
F.LN.D.: Matrices N7} It N ) M——

ZZ ZIXx
F.ILN.D.: First Iteradion, Du'ecuon of Steepest Ascent; Compu-
e * * *
tarion of ;Bn = F.B’ _ @m
F.I.LN.D.: First Iteration, Direction of Steepest Ascent; Compu~
R - GG

F.I.N.D.: Summary of Successive Approximations a; * (:—l)

tation of Metric R ** from Blocks

+ b d(r-l)
F.I.N.D.: Estimated Sampling Covariances of Estimated Coef~
ficients; Computauon of Matrices c’ CI)’B“ /’ Znii”p:‘,
G(t.]') z (P )(/I
F.L.N.D.: Estimated Sampling Covartances of Estimated Coef-
ficients; Computation of g g **; ‘L(i") = (ch 'ci:, 1y (47)
- ([;)’(f:)’ —"L(i'i) ¥ nL(i,f) - Eij(V(i'j) - G(I.I)) e,
F.I.N.D.: Estimated Sampling Covariances of Estimated
1..1.5.: Basic Matrices QJ; e

—— . ==
Moment Macrix M and L.I.S. Compuzation of My zzsz
Matrix W =M _-M H'H

Ly g Pl e
L.IS.: "Semueduced” Mattices (I)‘M L and iy W

L.LS.: “Reduced” Matrices V{&7) = tI> i (@’ ), Z("-”

= GV Fyr NG _ ) _ i 1) 3 i iyr
®IW (@), N v z tD AL MH, XD

Xz ZZ zx

* Not reproduced.
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Page

273

274

275
276

278
279

280

281

282

283

284

285

286

2g7
289

290
290

291



19. L.LS.: First Iteration, Direction of Steepest Ascent; Computation
of ﬂ*; Pi _ aiv(i.i). k:_‘ — a*Z“'”, §ﬁ _ aiv(i,j)(aj),' »
= A7 2 = B3 IR - FT5H) e 2
dZ0INd), 2t = L (T - §p7) 92

20. L.L.S.: First Ireration, Direction of Steepest Ascent; Computation

of Metric gy R ** from Blocks RU:7) = EﬁN(i‘n and Direction

aad* = (EB"*X&)GBR EEY e 293
21. L.1.S.: Summary of Successive Approximations a(;) = a(*:'-lJ

+ hdt_y Using [y and £, Methods oo 294
22. L.1.S.: Estimated Sampling Covariances of Estimated Coeffl-

cieats; Computation of the Matrices f’ = En'mp s g

-3 ‘mkr G _ g R0 ) (f’) b 1) =3 (kl) (g 1) s 295

23, L.L.S.: Estimated Sampling Covariances of Estimated Coeffi-

cients; Computation of gL **; 1 @A) _ (gi:)’(g ‘:-) - (f;-) ’(fi:),

3 i) o i zUd) L iy g Gid) o i) gLy L 296
24.1.* L.L.5.;: Estimated Sampling Covariances of Estimated Coeffi-

cients; Computation of — g q L ** and ((Bd*)'

= gk **)_l(gan *y’
24.2. L.LS.: Estimated Sampling Covariances of Estimared

25.  F.LD.: with Gy = 033 = @y = 1; Computation of 6ii(V(i'i))—' e 297
26. F.1.D.: Reduced Matrices j(i) = (c]);)’aiz_(v("-i))—l(@i) covernaeee 298
27, F.I.D.: Last Iteration; Final Approximation t0 A .oervievrnieevieeees. 299

28. F.I.D.: Summary of Successive Approximations to B .cocovviiviivinnnns 300
29, F.I.D.: Estimated Sampling Covariances of Estimated Coeffi-

cients; Computation of 1y Gj) (c;:) 'c:: et eaeernesrens 301
30. F.I.D.: Estmated Sampling Covariances of Estimated Coeffi-
cients; Computation of —I, o G ‘L(i'i) and

TS W% 0 A ialhab e SO OOOO: Y1 ¥

* Not reproduced,
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TABLE 1.2=—Computation of Moments Iﬁf’z for L.I.S.E. Method

Y1 Y3 Y3 .- Zs
62166.63 19566.35 48054.11 . 5977.33 364132 44
1305499.23 410893.35 1009136.31 125523.93 11846781.24
1285729.21 402194.33 987740.29 121894.25 11689942.05
Y1 19770.02 8699.02 21396.02 3629.68 156839.19
6347.25 15117.72 . 1821.11 177310.01
133292.25 317472.12 38243.31 3723510.21
125812.09 308979.17 38130.25 3656779.65
¥ 7480.16 8492.95 113.06 66730.56
37275.87 4670.94 435780.35
782793.27 98089.74 9151387.35
758815.21 93643.25 8980605.45
¥s 23978.06 4446.49 170781.90
626.87 34027.15
13164.27 1134570.15
11556.25 1108271.25
Zs 1608.02 26298, 90
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TABLE 3—~Matrix Wyy

Mz M2y
%1 Z2 % Z4 s ¥ ¥ ¥s ¥a Vs ¥s
zy11.617000 —0.024990 1.240_260 1.040760 0.499800 4.372830 1.213170 0.039690 1.467690 ~0.221760 0.967890 1.377180 4.843860
%y 0.681488 0.258778 1.261959 ~0,029863 2.147372 0.756856 0.549140 0.740566 0.461419 0.770429 1.337046 4.615456
Zy 4.131854 1.767609 0.272878 7.671379 0.894242 -0.354650 1,054910 -0.545839% 0.782032 0.669891 2.500586
Za 3.340734 0.275028 7.686090 2.237085 0.972105 2.397327 0.606291 2.122299 3.410184 11.745291
2y 0.160802 1,178645 0.362968 0.011306 0.4446490 ~0.067970¢ 0.283847 0.416445 1.451245
1.617000 ~0,024990 1.240260 1.040760 0.499800 4.372830 1.213170 0.039690 1.467690 —0.221760 0.967890 1.377180 4.843860
. ~0.015454 0,767012 0.643636 0.309090 2.704285 0.750259 0.024545 0.907662 —0.137142 0,598571 0.851GB8 2.995584
0.681101 0.277945 1.278043 ~0.022138 2.214952 0.775604 0.549753 0,763248 0.457991 0,785387 1.398329 4.6%90313
1 0.408082 1.876435 -0.032504 3.252013 1.13875¢ 0.807153 1.120608 0.672427 1.153112 1,994312 6,886365
3.067133% 0.447785 ~0.101440 3,413478 -0.352785 —-0.609437 —0.382295 ~0.562644 --0.280854 —0.940734 =3, 128752
. 0.145994 -0.033073 1.11292] ~0.115021 ~0.198699 -0,124642 —0,183443 —0,091569 —0,306714 —1,020090
0.207322 0.009G90 0.217013 0.052376¢ 0.003957 0.076295 -0.028225 0.066604 0.112305 90.283314
1. 0.046740 1.046740 0.252634 0.01908G6 0,368001 —0.136140 0.321260 0.541693 1.366536
0,001790 0.001790 =0,000917 -0.003433 -0.000401 —0.001828 ~0.002192 ~0.001439 —0.010212
1. 1. ~0.512166 =1.917294 ~0,224252 —1.021075 —~1.224252 —0.803897 --5.702940
] My MysMizehzy
Y1 ¥a ¥ Y4 Ys ¥s Y1 Yz Ys Ya Y3 Ye
»11.977002 0.869902 2,139602 0.509747 1.776634 2.946711 10.219598| 1,847693% 0.728666 2.033750 0.413682 1.670782 2.717355 9.411931
¥i 0.748016 0.849295 0.581308 0,837989 1,568955 5.455465 0.572462 0,730271 0.478990 0.718965 1.322010 4.551367
¥y 2.397806 0.458486 1.953157 3.174702 10.973048 2.263286 0.372099 1.818637 2.931077 10.149123
Yq 0.529886 0.526456 1.064490 3.670373 0.447302 0.440069 0.883260 3,035403
¥ 1.669310 2.758257 9.521803 1.534790 -2.514032 8.697878
Vs 4.734474 16.247589 4.232390 14.600726
Wyy=Myy—Myz Mz M2y
Y1 . Y2 ¥s Ya Ys Ys
yi1 0.129308 0.141235 0.105851 0.006064 0.105851 0.229355 0.807666
)’; 0.175553 0.119023 0.102317 0.119023 0.246944 0.904097
¥ 0.134519 0.086386 0.134519 0.243624 0.823924
Y 0.082583 0.086386 0.181229 0.634969
¥s 0.134519 0.243624 0.823924
Y 0.502083 1.646862




TABLE 4=-L.L.S.E.: Estimation of the Coefficients of Equation (2), Bys+ Buy; + Yizg +

FyEs+ €=
TABLE 4.1 LE 4 (Rop= My MM MrulPrad’)
: TABLE 4.3 08 = MaMeaMan — MpvtFas
My, I R.DA WAA
Zy zs ¥ Ya ¥ Y2
z, 0.681488 0.258778 1. 1940266 | vy, 0.005990 0.006507  0.082583  0.E02317 06.1973%9
4.131854 1. 5.390632 0051337  0.102317  0.1755%3  0.335716
0.681488 0.258778 1. 1,940266 0.005990 0.006507  0.082583 0.102317 0.197399
1. 0.379724  1.467377 2.847102 1. 1.086368 13.786435 17.080739 32953543
4.033589 -0.379724 1, 4.653864 0.044268  0.012600 0.064398 0. 121267
L. —0.094140  0.247918  1,153777 i 0.284651 1.454743  2,739344
! Q= REAFas
- Zs3 Ya Ya
zy 1.503124 =0.094140  2,408984 va 13.477199 15.500352 28.977551
zy 0.247918  1,153777 yi  0.284651  1.454743  2.739394
TABLE 4.2
g—‘:! Map TABLE 4.4
Ya ¥a q('u) qfnxlﬂ_l q;z)x 10-¢ q(’,)xlo"‘ q&,xlﬂ" gf,)xlo"‘ q(‘.,)xlﬂh’
2, 0461410 0.540040 1.010558% 4.0925 5.92155 8.31132 1.15130 1.59277% 2.203401 3.048104
zy —0.545839 —0.354650 -0.900489 0.2612 0.21345 0.1996 0.02656 0.036636 0.056668 0.070090
(PR = WAL,
¥ ¥a k! k! &! K "k} K
xy 0.74495¢  0.B58812 1603769 14.47 14.035 13.8% 13.835 13.834 13.833635
z, -0.178761 -0.139620 —0.3118382 8.171 9.35 13.31 13.794 13.830 13.833378
'ﬁﬁc( PZ\‘-) ‘
Ya ¥z gnx 107" g{x 107" gfyx10™0 ghax 103 byt
ve 0.441311 0.472482 0,91379% 4.216634  5.833135 8.069342 11.162828 ¥ 11.162828
Y3 0.525125  1,993607 0.094961  0.134132 0.185553  $.256688 ¥a 0.256688
e “! k! £l e == PRlby
13.833628 13.833628 13.B33G26 13.833628 z, - 8.536263
13.833608 13.833626 13.833628 13.833628 zy g%}gﬁfa
— &, 2




TABLE 4 ({continued)

TABLE 4.5
[bA c.l' m’ [bA Ca e]’ e lﬂzx[bg) 650) e(ﬂ)]- [b(ﬁ) C(ﬂ) E(t-)]»(m:n-m)
yo 11.162828  0.012666 11.162828 0.01 11.162828 1.
¥z 0.256688 0.168904 0.256688 0.01 0.256688 0.022994
z; — 8536263 0.163761 — 8.536263 0.01 — B.536263 — 0.764704
z3  2,031325 2.013952 2.031325 0.01 2.031325 0.181972
1 o= -_{aA colm= -~ 2.877828 1. —287.782899 —25.78B0463
4.914578  2.359285 —282.868320 25, 340200

TABLE 5—Sampling Covariances of the L.I.S.E. Estimated Coefficients

TABLE 5.1
¥a ¥ ya 0948132
11.1i62828 0.258688 11.419516 y: 1187214
_ 2.135346
¥aa = .,
ve s bAp pbf = 10.888585
ya 0.082583 0.102317 0.184901 Lo
¥a 0.175553 0.277870 ul(BAWp A) (BATA A)] = 1.409477
TABLE 5.2
&}~ 13833628 1} = 0.072287 1376, Wy pb7 = 107 x 0.663884
‘ T=11 C=4+ihe, W, b7 = 11.675695
[ 2AWA AP A
k=102 C* = CHT-FXb ki = 55.116965
TABLE 5.3
Y2 Z gz Za
wRAA Foy =Fpp *w0las
Y1 10051337 ys 20457431 —3.325844 17.131587
_ _ 1 » oy
uh = Ry =~ 1136, Wy ) (6705 1 ik
a¥anba
ya 0.041980 z, 1.503124 -0.094140  1.408984
z3 0.247918  0.153777
_ - % - * L
Fﬁﬁ = (H)™* F‘y‘y = (mPA;) Fﬁy
va 23.820590 7, 17.569108 —2.856278  14.712829
Zs 0.464356 — 2.391922
(10Phe) Fyo =F, + M5
z, 0.858812 z, 19.072232 -2.950419 16.121813
zs - 0.139620 z3 0.712274 - 2.238144
0.719192
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TABLE 5 (continued)

TABLE 5.4

F F
107 % V by, cd/ (b ) = 107 x C* [ hE ’87]

~Fyp Fyy
Ya Z 3 F-2
va 1.312018 — 1.127551 0.183310 0.368677
zs 1.051203 —0.162618 — 0.238966
z, 0.039258 0.059950
o 107 x [V*(b,, c )6 + ym”
ya 0.168904 0.406286
i 0.163761 —0.345806
P .2.013952 0.083395
2346619 0.143875
107 x = [V*(bp, e/ B 1 im” = 0.179949 o
. Y
C/T = S/ T(-F) = 0.124981 z;  10-2
. ©3.2 Z, 10—2
Vel (b, ) = 180.074171 1 1
vy e eThmermo o vt Gy, cs, €) deadjusted}
%
Y2 Z 3 Zs 1
vs 0.131291 - 0.112755 0.018331 —  4.062867
= 0.105120 —0.016261 3.458069
z 0.003925 —~ 0.833959
1 180.074171

277



H
x

TABLE 7.1"‘--_-F.I.N.D.: Basic Matrices ®

(Y+7T— W,)—:

x| ©90c oo |0oo00 oo [cooH me
fx,
+ | n|come ~o |[®o0o oo |cooo oo
8=
v 0040 40 COOD OO0 | MOCO
- 7.~q DSOTO OO coocoCc oo OO e
T * como ~o ([coom m~~ |coco oo
N N | |
-
m N | OO0 | OOmMO ~m 0000 oo
-
B | n|om0e ~~ |[Co0co oo [Rooco oo
N %.. COMHC MO | OFACO = 0000 oo
g tlemee ~~lococo oo mqeo o~
B Vu.a g l=N =] Ty ey oo — —. o0 Ty
G & &
- K
o B r=)

* Check row marked by B represents column sums with the elements used for normali-

zation omitted.
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TABLE 7.2=F.1N.D.: *'Semireduced’’ Matrices @izﬁ,,x and @;,\/_1

-y~
szzzsz

Y1

Ya

Y3

Zy

Zy )y Z g Zx Ze Zy
1 0.748016 0.837989  0.226658  0.011306  0.549140 ~0.354650 0.039690 -0.017050 0.129051 0.972105 3.142255
q;;!qxx 2 0.B49295  1.953157 1.513396  0.444649 0.740566  1.054910 1.467690 0.372250 1.021263 2,397327 11,814503
3 0.727409  1.014512  0.336065 0.092987  0.532850 -0.193982 0.294210 0.055025 0.327384 1.132347 4.318807
4 0.549140 0.770429 0.720197 -0.029863 0.681488 0.258778 -0.024990 0.017477 0.088908 1.261959 4.293523
2.873860 4.376087 2.796316 0.519079 2.504044 0.765056 1.776600 0.427702° 1.566606 5.763738  23.569088
1 0.748016  0.837989 (.226658 0.011306  0.549140 —0.354656 0.039690 —0.017050 0.129051 0.972105 3.142255
ESa] 2 0.226658 1.308488 3.570062 0.204908B 0.720197 3.586015 1.018500 0.199235 0.551253 2.373900 13.75921¢
xMxx 3 0.549140 0.770429 0.720197 -0.029863 0.681488 0.258778 -—0.024990 0.017477 0.088908 1.261959 4.293523
4 ~0.354650 0.782032  3.58601% 0.272878  0.258778  4.131854 1,240260 0.242509 0.594366 1.767609 12521651
L.169164  3.698938 8.102932 0.459229 2.209603  7.621997  2.273460 0.442171 1.363578 6.375573 33.716645
1 1.568955  2.758257 1.734381 0.416445 1.337046 0.669891 1.377180 0.407262 1.139718 3.410184 14,819319
3= 2 -0.837989 -1.669310 -1.308488 -0.283847 —0.770429 -0.782032 =0.967890 -0.250958 -0,739014 -2.122299 - 9,732256
DM xx 3 0.039690 0.967890  1.018500  0.499800 -0.024990 1.240260 1.617000 0.369600 0.885570 1.040760 7.6354080
4 0.972105  2.122299 2.373900 0.275028 1.2619359 1.767609  1.040760 0.315780 0.841836 3.340734 14.312010
1742761 4.179136 3.818293 0.907426 1.803586 2,895728 3.067050 0.841684 2.128110 35.669379 27.053153
1 0.617920 0.750680 0.132373  0.011306  0.549140 -0.354650 0.039690 -0.017050 0.129051 0.97210% 2.830566
MMM 2 0.761986  1.869141  1.433761  0.444649 0.740566  1.054910  1.467690 0.372250 1.021263 2.397327 11.563544
MeaMzzMax 3 0633124 0934877 0.254947  0.092987  0.532850 -0.193082 0.294210 0.055025 0.327384 1.132347 4.063770
4 0.549140 0.770429 0.720197 -0.029863 0.681488 0.258778 -0.024990 0.017477 0.088908 1.261959 4.293523
2.562171  4.325128  2.541279 0.519079% 2.504044 0.765056 1.776600 0.427702 1.566606 5.763738 22.751404
1 0.617920 0.750680 0.132373  0.011306  0.549140 -0.354650¢ 0.039690 —0.017050 0.129051 0.972105 2.830566
i ML 2 0.132373 1.228853 3.488944  0.204%08 0.720197  3.586015 1.018500 0.199235 0.551253  2.373900 13.504179
xTxzMz2nZX 3 0.549140 0.770429  0.720197 -0.029863 0.681488 0.238778 -0.024990 0.017477 0.088908 1.261959 4.293523
4 -0.354650 0.782032 3.586015 0.272878 0.258778  4.131854 1.240260 0.242509 0.594366 1.767609 12.521651
0.944784  3.531994 7.927530  0.45922%  2.209603  7.621997  2.273460 0.442171 1.363578 6.375573  33.149920
1 1.351551  2.5806933 1.560462 0.416445 1.337046  0.669891 1.377180 0.407262 1.139718 3.410184  14.256672
2 -0,750680 -1.585294 -1.228853 -0.283847 —0.770429 -0.782032 -0.967896 -0.250958 —0.739014 -2.122299 ~ 9.481297
L T 3 0.039690 0.967890 1.018500  0.499800 -0.02499C  1.240260 1.617000 0.369600 0.885570 1.040760 7.654080
xMxzMzzMze 3 0.97210% 2.122299 2.373900 0.275028  1.261959 1.767609  1.040760 0.315780 0.841836 3.340734 14.312010
1.612665 4.091827 3.724008 0.907426  1.B03586 2.B95728 3.067050 0.841684 2.128110 5.669379 26.741464




LV 8

TABLE 8.1*—F.LN.D.: Reduced Moment Matrices v &'/ = @1 if (8L}’

y G, 1 v G, 1)
1 2 3 4 1 2 3 4
1 0.748016 0.849295 0.727409 0.549140 0.748016 0.226658 0.549140 —0.354650 1169164
2 2.397806 1.197499 0.740566 0.849295 1.513396 0.740566 1.054910 4.158167
3 0.802406 0.53285%0 0,727409 0.336065 0.532850 —0.193982 1.402342
4 0.681488 0.549140 0.720197 0.681488 0.258778 2.209603
2.873860 3.095166 3.170164 2.504044 13.643234 2,.873860 2.796316 2.504044 0.765056 8.939276
& 2.146451 3.987667 1.971194 8105312 B 2.146451 1,971194 0.959038 5.076683
ya,n yan
1 1.568955 ~0.837989 0.039690 0.972105 1.742761 0.748016 0.226658 0.549140 ~0.354650
2 3.174702 ~1.953157 1.467690 2.397327 5.086562 3.570062 0.720197 3.586015
3 1.796946 —1.014512 0.294210 1.132347 2,208991 0.681488 0.258778
4 1.337046 ~0.770429 —0.024990 1.261959 1,.803586 4.131854
7.877649 —~4.376087 1,776600 5.763738 10.481900 1.169164 8.102932 2.209603 7.621997 19.103696
© 6.080703 1.482390 4.631391 12.194484 D 0.942506 1.489404 4,035982 6.467894
Vi v
1 1.568955 —=0.837989 0.039690 0.972105 1.742761 4.734474 ~2.758257 1.377180 3.410184
2 1.734381 ~1.308488 1.018500 2.373900 3.818293 1.669310 -0.967890 -2.122299
3 1.337046 ~0.770429 —-0.024990, 1.261959 1,803586 1.617000 1.040760
4 0.669891 -0.782032 1.240260 1.767609 2.895728 _ 3.340734
5.310273 ~3.698938 2.273460 6.373373 10.260368 6,763581 —4,179136 3.067050 5.669379 11.320874
9 3,575892 1.254960 4.001673 8.832525 D 9.521838 4.034940 7.791678 21,348456

* Check row marked by Prepresents column sums with the elements used for normalization omitted.



[T

TABLE 8.2*—F.LN.D.: The Matrices N /) = &L M ., M 75 M 1 (35)”

N 1) N,
1 2 3 4 1] 2 3 4
1 0.617920 0.761986 0.633124 0.549140 0.617920 0.132373 0.549140 —~0.354650 0.944784
2 2.313790 1.027864 0.740566 0.761986 1.433761 0.740566 1.054910 3.991223
3 0.721288 0.532850 0.633124 0.254947 0.532850 ~.193982 1.226940
4 0.681488 0.549140 0.720197 0.681488 0.258778 2.209603
2.562171 4.844207 2.915127 2.504044 12.825550 2.562171 2.541279 2.504044 0.765056 8.372551
b 1.929047 3.816343 1.971194 7.716584 ] 1.929047 1971194 0.959038 4.859279
NG, ) NG
1 1.351551 —0.750680 0.039690 0.972105 1,612665 0.617920 0.132373 0.549140 ~0.354650
2 3.003378 ~1.869141 1.467690 2.397327 4.999253 3.488944 0.720197 3.586015
3 1.623Q27 -0.934877 0.294210 1.132347 2.114706 0.681488 0.258778
4 1.337046 ~0.770429 ~0.024990 1.261959 1,803586 4.131854
_ 7.315002 —4.325)28 1,776600 5.763738 10.530211 0.944784 7.927530 2.209603 7.621997 18.703914
B 5.691975 1.482390 4.631391 11.805756 B 0.812410 1.489406 4.035982 6.337798
N (33 N3
1 1.351551 ~0.750680 0.039690 0.972105 1.612665 4.345746 ~2.586933 1.377180 3.410184
2 1.560462 ~1.228853 1.018500 2.373900 3.724008 1.585294 ~0.967890 -2.122299
3 1.337046 -0.770429 —0.024990 1.261959 1,803586 1.617000 1.040760
4 0.669891 —0.782032 1.240260 1.767609 2.895728 3.340734
4.918950 ~3.531994 2.273460 6.375573 10.035988 6.546177 -4.091827 3.067050 5.669379 11,190778
B 3.358488 1.254960 4.001673 8.615121 @ 9.133110 4.034940 7.791678 20.939728

* Check row marked by Prepresencs column sums with the elements used for normalization omitted.



TABLE 9=F.L.N.D.: First Iteration, Direction of Steepest Ascent; Computation of gn* =gl * —gm*

1 ”, r ’ » » r rl ,
a 10 % p} 10 x g} 10 x p? 10xp% m! n ot
1 —0.979914  —0.518544 ~0.563761  -0.136536  —1.218841  -1.598634  — 1.118965 0.479668
2 -0.200001  -0.376318 ~0.120226  -0.272196  —0.768742  -2.511302 - 0.810861 1.700441
3 1. —0.119717 -0.423157  —0.337018  —0.879893  -1.024884 - 0.258664
4 0.225058 0.000000 0.000000  -0.046318  -0.046318  ~0.195079 0. 0.195079
—1,014581 ~1.107145  ~0.792069  —2.813794  -5.320901  — 2.188490 2.375189
a? 10 x p? 10 x p? 10 x p?’ 10xp=2' m?’ 1 gnt’
1 0.231163  —0.518544 -0.563761  ~0.136536  —~1.218841  —0.296459 - 1.118965  —0.822506
2 -l -0.266356 ~0.634175  —0.522006  -1.422539 0.136309  — 1.258664
3 0.546429 0.000000 0.000000  -0.046318  —0.046318 0.144861 0. -0.144861
1 0.853513 0.008011 0.000001  —0.427214  —0.419201 1.318882 0. —1.318882
~0.776890 ~1.197935  -1.132075  -3.106899 1.303594 - 2377629  —2.286249
a 10 x p3 10 p? 10x p? 10xp’a m’ 1 an'’
1 0.420172  —0.745277 —0.693330  -0.227158  ~1.665766  -3.072645  — 1.058990 2.013654
2 1. 0.238885 0.263152 0.309930 0.811968 3.051238  1.444059 :
3 0.134945  —0.438473 0.355983 0.000000  -0.082490  —2.960079 0. 2.960079
4 0.164330  -0.156874 0.490653 0.000000 0.333779  -2.195244 0. 2.195244
-1.101740 0.416458 0.082772  —0.602509  —5.176730 0.385968 7.257918
108 = 10{p!(a") '] | B
0.463675 0.153325 —0.159209 1. 1.457792 | -0.979914  -0.200001 i
0.503855 0.100501 1. 1.757683 0.231163 0. -1
0.214484 1. 1155777 0.420172  -0.579827 0.
0.463675 0.153325 ~0.159209 1. 1.457792 | —0.328577  ~0.779828 0.
1. 0.330674 —0.343363 2.156678 3.143989 det B = 0.518181
0.453154 0.153148  —0.330674 1. 1.275628 {adjoint B)
1. 0.337960  —0.729717 2.206752 2.814996 | —0.579827  0.579827 0.200001
0.108059 0.455118  —0.3379G0 1. 1.225218 | —0.420172  —0.420172  -0.748750
1. 4211728 -3.127532 9.254128 11.338325 | —0.134034  —0.652216 0046233
B~ = (det B)“{ad] B)
10-1 % ¥t ~1.118965  —1.118965 0.385968
4.314815  =2.153116 4.211728 7.373427 | -0.810861  -0.810861 ~1.444959
_ 3.263736  -3.127532 - 1.016912 | —0.258664  —1.258664 0.089221
10 dec §=  0.022705 9.254128 11.338325 check: BB =




£8¢

TABLE 10—F.L.N.D.: First lteration, Direction of Steepest Ascent; Computation of Metric gy R ** from Blocks R L i)

0" % gy R**

10-1 x (gn*)’

1 2 4 5 7 8 9 11 12

1 0266621  0.328783  0.236943 -0.133045 -0.118236  0.076360  0.569236  0.016716  0.409424 0.047966 1.700770

2 0.998358  0.319540 —0.164064 —0.159452 -0.227134  1.264941  O0.618151  1.009689 0.170044 4.158856

4 0.204049 —0.118236 -0.146732 —0.055717  0.563127 -0.010525  0.531502 0.019507 1.633460

5 0.201673  0.179224 -0.115748 -0.422701 —0.012413 —0,304028  —0.082250 - 0.971591

7 0.222419  0.084458 -0.418165  0.007815 —0.394681  —0.014486  ~ 0.757835

B 1.348528 —0.209510 -0.387895 —0.552825  -0.131888 - 0.171373

9 4.021609  1.274460  3.155828 0.201365 10,000190

11 1.496392  0.963132 0.296007 4.261843

12 3.091558 0.219524 8129123

0.266621  0.328783  0.236943 -0.133045 -0.118236  0.076360  0.569236  0.016716  0.409424 0.047966 1.700770

1. 1.233145  0.888689 ~0.499005 -0.443461  0.286399  2.134999  0.062696  1.535601 0.179906 6.378973

0.592920  0.027354  0.000000 ~0.013649 —0.321297  0.562089  (.597537  0.504809 0.110893 2.061557

i. 0.046134  0.000000 —0.023021 —0.541889  0.949519  1.007786  0.851394 0.187030 3.476933

0.082217  0.000000 -0.041027 —0.108755  0.031279 ~0.052948  0.144362  —0.028235 0.026892

1. 0.000000 -—0.499005 ~1.322770  0.3B0441 ~0.643997  1.755840  -~0.343425 0.327090

0.135282  0.120224 ~0.077644 -0.138649 —0.004071 -0.099724  -0.058314  — 0.122897

I. 0.888680 -0.573940 —1.024889 -0.030097 —0.737153  —0.431060 - 0.908451

0.042357  0.125656 -0.013945  0.006182 —0.040835 0.047072 0. 166487

1. 2.966576  —0.320224  0.145949  —0.964062 1.111314 3.930552

0.591359 —0.064293 ~0.159597 —0.141670  —0.295996 - 0.070198

1. -0.108722 -0.269882 -0.239566  —0.500534  — 0.118706

o R e — 2.106137  0.672051  1.616406  -0.072048 4.322548

10x (gd ) =10x(ggpR*™)  (gn™) 1. 0.319091  0.767474  -0.034208 2.052357

0.600512  ~0.029366 0.097539 0.668685

1 0.139564 1.139564 1, ~0.048902 0.162427 1.113525

2 -0.112105 0.887894 0.390769 0.092577 0.483346

4 0.134384 1.134384 1. 0.236910 1.236910
5 -2.986748 -1.986748
7 2.489680 3.489680
8 —0.426340 0.573659
9 —0.271557 0.728442
11 0.174012 1.174012
12 0.236910 1.236910




TABLE 11=F.LN.D.: Summary of Successive Approximacions a(‘;.) =q :i-l) + b’.d(:._”

* 2™ a* * 'y " *r 'Y G 'L 'Y '
T €3] Q) ia) Fle) a5y 7 (e “in a4y Lo} T (1) (2}
= 0.979914 - 0.969447 — 0.927177 - 0.908995 — 0.946930 - 0.960014 — 0.975487 — 1.012009 ... — 1.228441 — 1.232267 — 1.232388 — 1,232388
- O 200001 - ?.208409 - ?.211977 - ?.226075 - 0.216264 ~ 0.215232 - 0 214029 - (1).211227 e = 0.198239 < 0.198160 - 0,1981%5 — 0 198153
. . . 1. 1. . 1. 1. 1.
0 225058 0.235137 0.218517 0,228232 0.247426 0.254867 0 265[48 0.285413 ... 0.383916 0.385619 0.385673 0 355673
?231163 ?.007157 - ?.077684 - 0211279 - 0.262112 — 0.318214 — 0.369432 - 0.483559 ... - 0.796225 - ?.800852 - 0.801006 - 0.801006
- 1. - 1. - 1. -~ 1. - 1. - L. - 1. - 1. e = I, - 1. - 1. - 1.
0.546429 0.733155 0.794088 0.881065 0.891581 0.916489 0.932657 0.971018 ... 1.049516 1.051801 1.051852 1.051852
0.853513 0.821538 0.814132 0.808009 0.814258 0.616142 0.821040 0.826179 ... 0.851961 0.851894 0.851900 0.851900
?.420172 0 399806 (11.366558 ?.345257 0 336999 0 325181 0.312609 0.287883 ... ?.234167 0.234133 ?.23411? (}.234117
. . . 1. 1. . 1. . .
0.134945 0 147996 0.166842 0.177744 0 183097 0 187826 0.194518 0.206407 ... 0.234854 0.234827 0.234834 0.234834
0.164330 0.182099 0.209650 0.221592 0.225284 0,233655 0.241121 0.255504 ... 0.284659 0.284668 0.284676 0.284676
2.395698 2.349033 2.332950 2,315552 2.273341 2.240701 2.208146 2125611 .. 1816170 1.811663 1811504 1.811504
det B 0.518181 0.660883 0.714223 0.811546 0.874477 0.932562 0.991392 1.125827 ... 1.596976 L.G03494 1.603733
03 x det Iy 0.022705 0.026875 0.028039 0.034615 0.038971 0.043701 0.048826 0.062035 ... 0.122710 0.123713 0.123749
§ 10-1x (det B)‘/det § 11.826005 16.251%88  18.192903  19.026339  19.622374 19.900266 20.129598 20.431793 ... 20.783346  20.783542 20.783543
use R, use R, use R use R, use R, use R, use R4 use R, use [, rse L, use L,
*r *r * o ® 7 e - * ** &« * 7
4y 4y dey, dgyx 0% d 4% 10% doyx 107 4% 103 dey X 102 .. dpn% 107 dp,,x 103 dy,x 10¢
0.013956 0.042269 0.009090 — 4.310712 — 1.046707 - 0.859623 - 0.730437 - 1151240 ... — 0.382544 - 0,01149¢ 0.162767

- 8.011210 - 3.003567 - 0 007048 (11.114891 3.082505 0 066831 0.056049 0 162636

. . . . 0.
0.013438 - 0.016619 0 .004857 2.181144 0.595316 O 371153 0.405301 D 1403008
- 8.298674 - 0,084842 - 0.066797 - 5 776520 — 4.48B152 - 2.845423 -~ 2.282551 - 0. ?11181

. 0, 0. Q. 0, 0.
0.248968 0.060933 0.043488 l 195005 1.992613 0.898239 0.767207
- 0.042634 - 0.007405 - 0.003061 0.710035 0.150764 0.27207% 0.102793
- 0.027155 - 3.033247 - 8.010650 - g.938426 — 0.945468 - 8.693423 - 8.494512
0 0.

0 007849 0.000476 - 0.008837
0 0

0170520 0.005034 - 0.081898
- 0.462673 - 0014534  0.299046

0, Q. 0.
0.228417 0.004831 ~ 0.122665
-~ 0.006750 0.000645 - 0.004040
- 3.003483 - 0.001457 3.009783
0.

0.017401  0.618846  0.005450  0.608285 0.373233 0371767  0.237794  0.359441 ... - 0.002753  0.000697  0.000107
0.023691  0.027551  0.005970  0.419620  0.669657  0.414767  0.287668  0.112922 ...  0.000911  0.000789 — 0.000771
~ 0062219  0.003516 - 0.018699 — 4.796675 - 2.611186 — 1.808635 - 1.6506B5 — 1863486 ... — 0.450708 — 0.0I3007  0.253492

hy=0.75 hy=1.0 hy=20 hy=0.88 bhs=1.25 hy= 1.8 hqe=5.0 he=08 . hy=1.0 hiy=1.06 hy=1.0




TABLE 12-=F.LN.D.: Estimated Sampling Covariances of Eatimated Coefficients; Computation of Matrices
ch=07a-t, e Bzl W ol

1
cl Cy $Cy
’ . 1 - . -, , ’ ’,
N <, <y el c : e} el e} e
1 -1.118965 -1.B18965 0.385968 5 —1L.118965 —1.118965 0.3859G8 9 -1.929826 -1.929826 —1.058990
2 0810861 -0.B10861 —1.444959 70 0. Q. 11 9. 0. 0.
4 0. Q. 0. 8 0, 15 0. 12 0. 0. q.
—1,929826 -1.929826 1.058990 - ~1,118965 —1.118965 0.385968 ~1.929826 ~1.929826 ~1.038990
1
Ih / h\
1 2 3 4 5 6 7 8 9 10 11 12
—1..593634 -2.511302 -1.024884 .0.195079 0.329%01 [-1.598634 ~1.982378 —0.195079 -1.764746 - 3.540839 | -2.679641 1.769491 =2,658405 —1.733318 =5.301874
4 )
I3 / I
1 2 3 4 3 6 7 8 9 10 IL £2
—0.29645%9 1.269173  —0.069270  0.144861 1.048305 |-0.296459 0.136309 0.144861 1.318882 1.303594 | 0.052266 -0.624804 2.105919 1.939132 3.472513
f: /: /:
1 2 3 4 5 6 7 & 9 10 11 12
~1.684311 -3.727882 -2.199%95 .0.428635 0.140424 |-1.684311 -~3.969137 —(.428635 -3.919758 -10.001843 —3.072645 3.051238 -2.960079 -2.195244 ~5.176730
—3.579404 =4,970011 -3.393750 -0.478853 ~3,579404 -5.815206 —0.478853 —4.365623 =5, 700020 4195923 -3.512565 —1.989431
G ) G L) G e
1 2 4 5 7 8 9 11 12
1 1.226064 1.095702  §$.078014  2.399782 1 1.226064  0.078014  0.706754 2.010833 1 1.779575  0.593424 0.105326 2.480325
2 1.BOTI78  0.172669  3.075350 2 1.095702  0.172669  1.572487 2.840859 2 1.838479 1.552943  [.016682 4.408106
4 0.019853  0.270537 4 0.078014 0.0198531 0.181%56 0.279424 4 G.142319  0.137105 0.101679 0.381105
el tBY G (2,1} G @3}
2 11 12 5 7 8 9 i1 12
9 2.658815 1.193557 0.446011 4.298384 5 1.226064 0.078014 0.706754 2,010833 5 1.779575 0.595424 0.105326 2.480325
11 £.915312 1.450312 4.559182 7 0.019853 0.181556 Q.279424 7 0.142319 0.1237105 0.101679 0.381105
12 1.223355  3.119679 8 1.660440 2.548751 8 1.291210 1.243294  0.923956 3.458461




TABLE 13==F.L.N.D.: Estimeted Sampling Covatiances of Estimated Coefficients; Computation of gy L ir"; t, i (c;)‘c::,
2y, (i,4) = ([l)’([l)' —&p () + AL (4.5 = < (V(i.f) - G(i.f))
P

AR

1 @) 1y, 4,3}
1 2 4 5 7 8 9 11 12

1 1.252084 0.907325 0. 2.15%40% | 1 1.252084 0. 0. 1.252084 | 1 - 0.744852 0, 0. — 0.744852

2 0.657495 0, 1.564821 |2 0.907325 0. 0. 0.907325 | 2 2.788521 0. 0. 2.788521

4 0. 0. 4 0. 0. 0. 0, : 4 g, 0. 0. 0.

1y &9 ‘L a,2) 1y @,
b4 11 12 5 7 8 9 11 12

9 1.121461 0. 0. 1121461 | 5 1.252084 0. 0. 1.252084 | 5 — 0.744852 0. 0. — D.744852
11 0. 0. o, 7 Q. 0. 0. 7 0. 0. 0.

12 0. 0. B 0. 7} 8 Q, o] 0.
1 ) 1 ) 1y G,3)

1 2.555631 4.014653 0.311861 6.882147 | 1 0.473929 0.037833 0.523175 1.054938 | 1 4.513350 4.477582 2.919448 11.910382

2 6.306638 0.489904 10811197 | 2 — 2.028943 — 0.247590 ~— 2.239769 -~ 4.516303 |2 9.989388 9.910222 G. 461608 26.361219

4 0,038056 0.839822 | 4 - 0.231580 - 0.028259 — 0.255643 - 0.515483 | 4 1.148589 1.139486 0.742961 3.031037

1y (3,3} 1y (2,2) 1y, @)

9 9.441147 9.095273 6.745208 25281629 | 5 0.087888 - 0.042945 — 0390094 - 0.346052 |5 - 0.088032 - 3.547024 - 3.266102 - 6 901159
11 8.762070 6.498099 24.355443 17 0.020984 0.191055 0.169094 | 7 ~ 0.022403 - 0.902671 - 0.831180 - 1.756235
12 4,819100 18.062408 18 1.739450 1.539510 | B — 0.204870 -~ 8.254697 -~ 7.600931 - 16.060498

3 ) e a) AL @Yy 4,0 A Ay 4 0

1 26.985265 31.917756 23.357757 82.260779 | 1 —13.465796 -11.653649 9.157752 - 15963693 | 1 $8.585040 — 0.836130 40.498821 98.247730

2 95.663258 11.209019 158.790034 | 2 -15.927136 -15.573472 -~ 19.327693 - 50.828302 } 2 123.966660 55.274544 96.686918 277.928124

4 29.319283 83.886061 | 4 ~11.655649 —14.630483 — 5.180R79 ~ 31.467013 [ 4 55.713338 -~ 1.629962 52.722043 106.805419

31 048) 4 ap 03) A @) o4 G LA Y ¢ ap ()

9 413,529297 116.400672 311.433366 841385337 | 5 20.411716 17.667861 — 13.881499 24.198078 | 5 - 43.503895 0.620891 -30.073487 - 72,956451
11 131.914714 82.891888 331.207275 | 7 22.177173 7.833278 47.698313 | 7 - 41.371436 1.210372 -39.150169 — 79311233
12 297.834734 692.181990 | 8 129.433572 123.405351 | 8 -~ 16.912755 —34.901090 -52.392838 -104, 206683
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TABLE 14=F ,LN.D.: Estimated Sampling Covariances of Estimated Coefficients

TABLE 14.1
~107 x (g L ™™) at firar estimate (@n ™’ WX gd*) = —10* x (g L **) Hgn*
1 2 4 5 7 B 9 11 12

1 0.256817 0.288104 0.230458 —0.126876 ~0.117134 0.086345  0.533268 —0.053137  (.375793  0.479668 1.953308 13.074294 14.074294
2 0.900141 0.307191 -0.129908 -0.153258 ~0.170879  1.187657 0.453643 0.902253 1700441 5,285383 - 0.114607 0.885393
4 0.292812 —0.114240 -0.146022 -0.049252  0.545647 -0.027694 0.519790 0.195079 1.733770 - 7.257781 ~— 6.257781
5 0.215759  0.177108 -0.134905 -0.441607 0.041679 —0.268073 -0.82250p - 1.60357! -33.810072 —32. 810072
7 0.221561 0.076622 ~0.413490 0.021130 -0.383189 -—0.14486]1 - 0.861334 26.934G83 27. 934683
8 1276941 ~0.167078 -0.26646) ~0.447919 -1318882 - 1.115471 ~ 4895655 -'3.895655
9 4052096 1.073053 3,047101 2.013654 11430303 ~ 8.035470 - 7055470
11 1.231526  0.763937  2,960079 6. 197753 5.063908 6.063908
12 2.930136  2,195244 9.635095 7.132693 8 132693

0256817 0.288104 0.230458 —0.i26876¢ --0.117134 0.086345 0.533268 —0.053137 0.375793  0.479668 1.953308

- 1.121826 0.897365 -0.494033 -0.456102 0.336214 2.076451 -~0.206906 1.463273  1.867743 7.605833

0.576938 0.048656  0.012424 -0.021853 -0.2G67744  0.589423 0.513253 0.480677 1.162336 3.094112

1. 0.084335  0.021535 -~0.037879 ~0.464077 1.021640 0.889616 0.833153  2.014663 3.362987

0,081902 —0.001433 -0.032066 -0.104155 0.017401 —0.023296 0.142028 -0.333384 - 0.260004

1. —0.017508 —0.476984 -1.271700 ¢.212465 —0.284439 1,734107  4.0704B4 ~ 3.174544

0,152785 0.119026 ~0.088304 -0.190543 0003966 —0.090283 -0.616402 - 0.709756

1. §.779042 =0.577967 ~1.247132 0.025961 -0.590920 -4.034437 -~ 4.645453

0.055948  0.124975  0.008802 0.002133 ~0.055501  (.439129 0.575487

1. 2.23376%  0.157338 (.03B140 -0.992018  7.848854  10.286084

0.660997 -0.180495 ~0.042508 -0.098780 —2,701877 — 2.362664

1. -0.273064 —0.064310 —0.149441 -—4.087573 - 3,574389

2.050609 0.656982 1.614691 -1.674625 2,647658

I. 0.320384 0.787420 -—(.816647 1.291156

0.543901 —0.064741  2.,292483 2771643

1. ~0.119032  4.214883 3.095856

0331179 2362198 2.693377

1. 7.132693 8.132693




TABLE 14.2

(1/T)(~g gL ** at final estimate (T = 21)

al a‘ al 1 1 T 3 3 3
N 2 4 e, a, a, a, a, a,

988
A A AR R A & nh R
B e W MW M MR R R e

0

0.337121  -0.012400 -0.164261 0.457631 -0,194285  -0.013718 0.036795  -0.016007  -0.021393
0.001979 0.004079  -0.013768 0.002878 0.001109  -0.002322 0.000343 0.001217

0.09105¢  -0.224i70 0.114377 0.006705  —0.015064 0.006862 0.009502

0.705917 -0.302978  —0.015097 0.049430  —0.022464  -0.025341

0.180082 0.003419  -0.011976 0.003102 0.009623

0.002189  -0.003497 0.001698 0.002380

0.009027  —0.004424  -0.005087

0.00319% 0.002025

0.003951

0.407480  ~0.016883  —0.170918 0.609157 -0.195755 —0.016811 0.052880 —0.025668 ~—0.023120




x

TABLE 15*—L.1.S.: Basic Matrices &%
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TABLE 16.1=-Moment Matrix M ., and L.LS. Computation of My M52 M 4,

! Ti_, Z_y (Y + T— W), W, T W, z T G+ F M, only
%1 Z2 3 Z4 Zs Y1 ¥a ¥s Ya ¥s

zy 1.617000 —0.024990 1.240260  1.040760  0.499800| 0.039690 0.967890 1.018500 0.369600 0.885570 7.654080

Py 0.681488 0.258778  1.261959  —-0.029863| 0.540140 0.770429 0.720197 0.017477 0088908 4 293933

Pl 4131854 1767609  0.272878|-0.354650 0.782032 3.586015 0.242509 0.594366 13 521651

Py 3340734 0.275028| 0.972105 2.122299 2.373900 0.3157B0 0.341836 14 312010

25 0.160802| 0.011305 0.283847 0.204908 0.121292 0.282249 082247

1 0.748016 0.837989 0.226658 —0.017050 0.129051 1.92466

i 1669310 1.308488 0.250958 0.739014 4.805759 | _

¥a 3:570062 0.199235 0.551253 5855696 i, only

Ye 0.173354 0.271653 0.878150

e 0.642150 2.33312

1.617000 —0.024990 1.240260  1.040760  0.499800( 0.039690 0.967890 1.018500 0.369600 0.885570 7.654080
1. -0.015454 0767012  0.643636  0.309090| 0.024545 0.598571 0.629870 0.228571 0.547662 4.733506 2.029220

0.681101 0.277945  1.278043  -0.022138| 0549753 0.785387 0.735937 0.023189 0.102594 4.411813
1. 0.408082  1.876435  —-0.032504| 0.807153 1.153112 1.080510 0.034046 0150829 6.477465 3.225452

3.067133  0.447785  —0.101440 | ~0.609437 —0.280854 2.504489 —0.050442 ~0.126744 4. 850488
i 0.145994  —0.033073| —0.198699 —0.091569 0.816556 —0.016445 —0.041323 1.581440 0.468518

0.207322  0.009690| 0.003957 0.066504 —0.028225 0.041743 0.097843 0.398937
1 0.046740| 0.019086 0.321260 —0.136140 0.20134G 0.471939 1.924233 0.877492

0.001790| —0.003433 —0.002192 —-0.001828 0.004186 0.003096 0.001619
1. ~11917294 -1.224252 ~1.021075 2.337649 1.720345 0.904372 —0.095627

TABLE 16.2-=Matrix Wyy= Hyy— ﬁyzﬁ;m:y f"Tyz*‘jl‘;lz'f‘qz:,'
b4 ¥z ¥ ¥Ya ¥s ¥i ¥ ¥ Ya s

0.175553 0.119023 0.102317 —0.047632  0.003391  0.352653 0.572462 0.718965 0.124340 0.030582 0.125650 1.572010
" 0.134519 0.086386 —0.009917  0.051386  0,381398 " 1534700 1.222101 0.260875 0687627 4 424360
vs 0.082583 —0.007474  0.002581  0.266395 vs 3.487478 0.206709 0.548671 5.589300
Y 0.069063  0.036719  0,040758 Ve 0.104290 0.234933 0,837391
vs 0.084933  0,179012 s 0557216 2154108
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TABLE 18—L.LS.: “Reduced” Matrices v &9 = @i g, (8]y, 2@ 2 35 W,y (2D N <y CD L Z2ED o Ly iz M) (247

v (L) y L2) v
1 2 3 4 1 2 3 4 1 2 3 4
1 0.748016 0.849295 0.727409 0.549140}0.748016 0.226638 0.549140 —0.354650 1.169164 |1.568955 —0.837989 0.039690 0.972105 I.742761
2 2.397806 1.107499 0.74056670.849295 1.513396 0.740566 1.054910 4.158167 (3.174702 —1.953157 1.467600 2.397327 5.086562
3 0.802406  0.53285010.727409 0.336065 0.532850 -0.193982 1.402342[1.796946 -1.014512 ©.294210 1.132347 32,20899]
4 0.681488) 0.549140 0.720197 0.681488 0.258778 2.209603 |1.337046 —0.770429 —0.024990 1.261959 1.803586
2.873860 5.095166 3.170164 2.504044|2.873860 2.796316 2.504044 0.765056 B8.939276|7.877649 -4.576087 1.776600 5.763738 10.841900
V(‘n') V(z.s) V“'”
I 0.748016 0.226658 0.549140 —0.354650(1.568955 —0.837989 0.039690 0,972105 1.742761|4.734474 -2.758257 1.377180 3.410184
2 3.570062 0.720197  3.586015)1.734381 -1.308488 1.018%00 2.373900 32.818293 1.669310 -0.967890 -2.122299
3 0.681488 0.258778( 1.337046 —0.770429 —0.024990 1.261959 1,80358¢ 1.617000 1.040760
4 4.1318%4] 0.669891 —0.782032 1.240260 1.767609 2.895728 3.340734
1.169164 8.102932 2.209603 7.621997]|5.310273 —3.698938 2.273460 6.375573 10.260368 |6.763581 —4.179136 3.067050 5.669379
z (1,1) Z (1,1) z {1,1)
I 0.175553 0.119023 0.153340 Q. 0.1755%3 0.102317 0. 0. 0.277870(0.246944 —0.119023 0. 0, 0.127921
2 0.134519 0.147691 0. 0.119023 0.086386 0, Q. 0.205410(0.243624 -0.134519 0. 0. 0.109105
3 0.183254 0. 0.153340 0.092640 O©. 0. 0.2459810.261213 —0.147691 0. Q. 0.113522
4 0. 0. 0, 0. G. g, 0. 0. 0. 0. 0.
0.447917 0.401234 0.484287 0, 0.447917 0.281344 0. [ 0.729262(0.751782 —0.401234 0. 0. 0.350548
7z a,n pACKY Z (3,3}
1 0.175553 0.102317 0, 0. 0.246944 -0.119023 0. a. 0.127921|0.502082 -0.243624 0. 0.
2 0.082583 0, 0. 0.181229 -0.08G3B6 0. 0. 0.094842 0.134519 0. 0.
3 a. 0, 0. Q. 0. Q. a, Q. 0.
4 Q. 0. 0. 0. 0. 0. 0.
0.277870 0.184901 0. a. 0.428174 -0.205410 0O, 0, 0.222763(0.258458 -0.109105 0. 0. 0, 149352
N 1) N N 1,9
1 0.572462 0.730271 0.574068 0.549140( 0.572462 0.124340 0.549140 —~0.354650 0.891293|1.322010 -5.718965 0.039690 0.972105 1.614839
2 2.263286 Q.959807 0.740566) 0.730271 1.427009 0.740566 1.054910 3.932756)|2.931077 -1.81B637 1.467690 2.397327 4977456
3 0.619151 0.532850( 0.574068 0.243424 0.532850 -0.193982 1.156360(1.535732 —0.866820 0.204210 1.132347 2.095468
4 0.681488| 0.549140 0.720197 0.681488 0.258778 2.209603|1.337046 —0.770429 —0.024990 1.261959 1,803386
2.425942 4.693931 2.685876 2.504044) 2.425942 2.514971 2.504044 0.765056 8.210013)7.125866 -4.174852 1.776600 5.763738 10.491351
N 2 N (23) N &
1 0.572462 0.124340 0.549140 -0.354650] 1.322010 -0.718965 0.039690 0.97210% 1.614839(4.232391 -2.514632 1.377180 3.410184
2 3.487478 0.720197 3.586015| 1.553151 ~1.222101 1.018500 2.373900 3.723450 1.534790 —0.967890 -2,122299
E) 0.681488 ©.258778) 1.337046 —0.770429 —-0.024990 1.261959 1.803586 1.617000 1.040760
4 . 4.131854] 0.6698%1 =0.782032 1.240260 1.767G09 2.895728 3.340734
0,891293 7.918030 2.209603 7.621997| 4.882098 —3.493527 2.273460 6.375573 10.037604|6.505122 —4.070030 3.067050 3.669379 11.171521
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TABLE 19~=L.LS.: First ltecation, Direction of Steepeat Ascent; Compucation of n " ; pi= afyih), k’ =afzlh,

= a VDG L iz i iy, ni=2) (Hal-

u i
2
at al a’
1 2 3 4 b 6 7 8 9 10 11 2
-0.937300 -0.175117 1, 0.163679 -~ 0.022994 ~ 1, 0.764704 0.818027 0.395823 |, 0.140874  0.187339  2.335035
‘t 1) ’ » r L ’ - ’
2, £ ’) . ’, ’ ’ £, ’y
1 ~0.032550 —0.114042 —~0.029254 — 0.175847 5 — 0.032550 — 0.114042 —0.029254 —0. 175847 9 — 0.010736 —~ 0.200024 — 0.051369 -~ 0,262130
2 0.012771 —0.103665 ~0.040661 — 0, 131555 6 ~ 0.023522 - 0.091076 -0.033773 —0.148372 10 - 0.013135  0.098883 0.043585-  0.129333
3 0.013878 -0.104001 —0.049658 - 0.139781 7 ©0.000000 ¢.000000 ~0.008300 —0.008300 11 ~ 0.004100 — 0.023955 0.0D0000 — 0.028055
4 -0.000000 0.000000 —0.008300 — 0.008300 8 -~ 0.003945 0,000000 —0.011008 —0.014954 12 0.007934  0.014725 0.0000080  0.022659
~0.005900 —0,321709 —0,127875 — 0.455485 - 0.060018 - 0.205118 —0.082337 —0.347474 - 0.020037 ~ 0.110371 — 0.007783 — 0.138192
1 E 4 1’ ar a2’ ’ s 3" '
k! kl kl kl ha ": "t ": ’t:
1 —0.032048 -0,106354 —0.021277 = 0, 159679 5 - 0.032048 — 0.106354 ~0.021277 —0.15967% 9 — 0.012910 - 0.186908 — 0.044888 — 0.244707
2 0.012574 -0.089123 -0.038086 — 0.114636 6 — 0.018389 — 0.084036 -0.014652 -0.117978 10 — 0.012574  0.08912 0.038086  0.114636
3 0.013664 -0,096166 ~0.044297 - 0.126798 7 0. 0. 0. 0. 11 o. 0. 0. 0.
i 0. 0. 0. 0. 8 0. 0. 0. 0. 12 0 0. 0. 0.
~0.005809 ~0.291644 —0.103661 — 0.401114 — 0.050438 — 0.191290 ~0.035929 ~0.277638 — 0.025484 — 0.097784 — 0.006801 - 0.130070
3 1 T I
0.042152 0.021044 ~0.016476 1. 1.046719 1 0,041501 0.019126 -0.017684 1, 1042943
0.093698 0.019092 1. 1.133835 0.087382 0.015141 i. 1.121650
0.023252 1. 1.025868 0.020318 1. 1047775
0.042152 0.021044 —0.016476 1. 1.046719 | 0.041501 0.019126 -0.017684 1. 1.042943
1. 0.499239 —3,390873 23.72359 24.831962 | 1. 0.460867 —0.426114 24.095443 25.130196
0.083192 0.027318 - 0.499239 1. 0.611271 0.078567  0.023291 - 0.460867 1, 0.640990
1. 0.328372 — 6.000993  12.020266 7.347645 1. 0.296452 — 5.865902 12.727946 8. 158496
0.007841  0.554805 — 0.328372 1. 1.234279 0.005878  0,562740 — 0.296452 i. 1.272165
1. 70,750291 —41.B74608 127.521682 157.397365 1. 95.728831 —50.430145 170.111943 216.410629
5 Tt
65.972491 -29.233440  70,750291 108.489342 80.669312 ~34,244972 95728831 143.133170
25.770734 ~ 41.874608 — 44.337314 27.678098 ~ 50.430145 — 55.997019
det § = 0,0000274992 127.521682  157.397365 det T = 0,0000191677 170.111943  216.410629
nt n? n?
1 2 § 5 7 8 9 11 12
-0,096652 —0.575883 0.587268 — 0.085267]~ 0.010836 —0.347583 -0.576330 ~0.934750} - 0.511833 ~ 0.713622 0.055252 —1. 169602
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TABLE 20—L.LS.: First Iteration, Direction of Steepest Ascint Computatmn o£ Memc GBGBR

Direction @d ={gn )(@@R

* from Blocks R (1) =

i1 5 i) and

IO—IXQQR (en*)’
i 2 4 5 7 8 9 11 12

1 0.377667 0.481778 0.362281 ~0.167350 -0.160532 0.103676 0.935326 0.028080 0.687767 —-0.096652 2.552042

2 1.493146 0.488569 ~(,213483 —0.216492 -0.308386 - 2.073745 1.038394 1.696115% -0.575883 5.957505

4 0.449594 —0.160532 —0.199222 =0.075649 0.945963 ~0.017680 0.892839 0.5872068 3.273432

5 0.147527 0.141517 ~0.091395 —0.553586 -0.016620 -0.407065 ~0,010836 - 1.331825

7 0.175624 0.066688 ~0.559882 0.010464 -0,528440 —0.347583 —~ LGI7859

8 1.064809 =0.280514 -0.519354 -0.740179 —0.576330 - 1.356635

9 5.397216 1.756203 4.348724 ~0.511833 13.551362

11 2.062025 1.327194 —0.713022 4.955686

12 4.260160 0.055252 11.592369

0.377667 0.481778 0.362281 ~0.167350 -0.160532 0.103676 0.935326 0.028080 0.687767 -0.096652 2552042

1. 1.275666 0.959258 —0.443115 ~0.425062 0.274517 2.476583 0.074353 1.821089 -0,255919 6.757371

0.878558 0.026419 Q. —0.011706 —0,440642 0.880581 1.002573 0.818754 —0.452586 2.701950

1. 0.030071 Q. —0.013325 —0.501552 1.002302 1.141157 0.931929 —.515147 3.075436

0.101278 0. -0.044878 ~0.161851 0.022263 —0.074766 0.208471 0.693592 0.744110

1. Q. ~0.443115 ~1.598081 0.219823 —0.738224 2.058398 6.848369 7.347170

0.073372 0.070382 —0.045455 -0.139129 -0.004176 ~0.102304 ~(.053664 - 0.200975

1. 0.959258 -0.619516 -1.896208 —0.056928 1.394326 -0.731399 - 2.739120

0.019830 0.076770 ~0.007250 0.006636 ~0,034672 -0.035877 0.025437

1. 3.871360 ~0.365630 0.334676 ~-1.748442 -1.809231 1,282731

0.231323 ~0.118164 —(.171983 ~0.114330 0.437273 0.264119

1. -0.510817 -0.743476 —0.494246 1.890314 1.141774

xo F 2N . 1.866470 0.604866 1.513873 0.137186 4.122396

102 x{pd )= 102 % (R ) l(@ﬂ ) 1. 0.324069 0.81108¢9 0.073500 2.208659

0.534306  -0.074194 0.612261 1.072373

i - 8.877012 - 7.877012 1. —0.138860 1.145899 2.007038

2 - 0.340692 0.659307 0.317569 ~0.722332 - (. 404763

4 9.099448 10.009448 1. ~2.274564 - L.274564
5 14.154998 15.154998
7 —14.077695 -13.0776%5
8 2.225777 3.225777
9 1.649380 2,649380
11 0.830051 1.830051
12 — 2.274564 ~ 1274564

2.389692




TABLE 21=—L.1.5.: Summaty of Successive Approximations a G‘) = a(*j_ O+ hjd(i_y Using Ry and L j Methods

*

*

* *7 ™ * 7 * * * 7 * 7 * 7
2 (o) % () (1) % (3) O a@) a(s) ) 2 (s} ) 2 {10)
— 0.937300 -0.981G85 —1.004801 —1.005926 —1.008160 —1.010929 —1.011386 —1,011690 -1.011861 -1.011957 -1.011957
- (1).175117 —?.176821 —(1).178442 —?.178574 ~0,178262 —0.177878 ~0.177714 -0.177602 -—ti.l.l77542 -—?.177510 —?.177510
. . . . 1. L. 1. I. . . .
0.163679  0.209176 0.234785 0.236182 0.237652 0.239390 0.239484 0.239530 0.239560 0.239581 0.239581
— 0.022994  0.047780 0.092506 0.065835 0.070662 0.068734 0.069855 0.070309 0.070494 0.070614 0.070613
- 1. ~1. -1, -1. —1, -1. —1. -1. -1. -1. -1.
0.764704  0.694315 0.647516 0.673241 0.668621 0.670349 0.669316 0.668913 0.668755 0.668651 0.608651
0.818027  0.B29156 0.837273 (.834116 0.835328 0.835558 0.835824 0.835968 0.836040 0.836082 0.836082
(13.395823 0.404070 0.404419 0.401880 0.401437 0.400770 0.400746 0.400680 0.400632 0.400606 0:400606
. 1. 1. 1. 1. i. 1. 1. 1. 1. 1.
0.140874  0.145025 0.148545 0.147547 0.147705 0.147619 0.147630 0.147621 0,147615 0.147614 0.147614
0.187339  0.175966 0.173672 0.176780 0.177289 0.178114 0.178165 0.178263 0.178331 0.178366 0.178366
2.335035 2.346984 2.355476 2.351084 2.352275 2,351728 2,351921 2.351994 2,352026 2.352049 2.352049
104 x det S 0.274992  0.258411 0.254885 0.264089  0.263%970 0.266469 0.266423 0.266493  0.266557  0.266587
104 x det T 0.191677  0.190677 0.189889 0.197011  0.196963 0.198846 0,198813 0.198866 0.198914 0.198936
. det T/dec § 0.697028 0.737881 0.744998 0.746002 0.746157 0.746225 0.746231 0.746232 0.746233 0.746233
= use R, use R; use R, use R, use R, use R, use R, use R, use [, use L,
*7 * * - * 7 *7 * * . . »
10’xd(°) IO’xdm lO’xa’m 10’xd(3) lO‘xd(‘) lo’xd(,) lo’xd(” 10’xd;) 10“xd;) IO‘Xd;‘)
— B.877012 -2.568418 —0.187475 —0.319219 -0.276922 ~0.761754 -0.379138 -0.171764 -0.954336 -0.115382
~ 0.340692 -0.180147 -0.02191¢C 0.044563 0.038363 0.272571 0.140196 - 3.060435 3.320815 8.014626
Q. 0. Q. 0. 0. 0. 0. . . .
9.099448  2.845499 0.232679 0.210035 0.173849 0.156832 0.057453 0.029944 0.202674 0.070118
13.154998 4.969600 —4.445148 0.680488 -0.192782 1.868384 0.567369 0.185256 (1).196090 —8.080635
. 0. Q. Q. Q. : 0. 0. 0. . .
—14.077695 -5.199967 4287601 —0.660003  0.172755 —1.721611 —=0.503265 -0.157962 -1.041166  0.059592
2.225777  0.901850 —0.526189 0.173251  0.022991 0.443234 0.179217  0.071979  0.420164  0.004062
1.649380  0.038868 —0.423233 -0.063309 -0.066727 —0.039949 —8.081764 -0.048594 —8.255078 —8.012221
0. 0. 0, 0. a. a. . 0. . .
0.830051  9.391211 -0.166365 0.022523 -0.008599 0.018715 ~0.011249 -0.006233 -0.008954 0.002367
- 2.274564 -0.254945 0.518036 0.072768 0.0824063 0.085236 0.121668 0.068594 0.352979 0.014035
2.389692 0.943553 -0.732007 0.170097 —0.054607 0.321660 0.090488 0.031656  0.233188 -0.043437
h=0.5 h=10.9 h=0.6 h =107 h=1.0 h=0.6 h=0.8 h=1.0 h=1.0 h=1.0
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TABLE 22=—=L.1.5.: Estimated Sampling Cu\{a:ia_nce?,o_f Estimated Coefficients; Coq;putn;ion of the
t

Matrices f}:??"’p;, gl= Et'"hi, G

L1} ’ Gy o 4
D= Tyl D = BGL) 1)

1 2 4 5 7 8 9 11 12
7y K /}
-1.226174  0.188690 (G.000238 -1,037245 ~=1,226174 0.000238 0.758378B -0.467557 0.467939 —0.347010 0.491766 0.612696
bt & 1 b 3
-0.60168] —0.901’100 =0.000112 -1.502894 ~0.601681 0.0001112 0.000462 —0.601331 -2.387437 0.176’985 0.054099 -2, 156352
bt b1 H
-1.718628 -0.364’094 —0.5857317 -3.168460 -1.718628 —-0.585';37 —0.163997 -2.468363 =0.202036 0.000647 -0.000889 —0.202877
&1 g} ' H
1
-1.226794  0.188561 0. -1,038213 -1.226794 0. 0. 0.470658 0.
2! B; gt
3 2
-0.601376 -0.999118 0. ~1.600495 -0.601376 0. ¢, ~2.493856 0, 0.
& : e i g:
~1.632154 -1.081217 0. -2.713371 ~1.632154 Q. 0. —0.,202723 0. Q.
G 1) G a2 G @)
1 2 4 s 7 8 9 1 12
1 0.173718 0.109886  0.017688 0.301293]1 0.173718 0.017688 —0.032038 0.159369| 1 0.229661 -0.001360 -0.029511 0.198790
2 0.100794  0.021737 0.232418| 2 0,109886 0,021737 0.005918 0.137541| 2 0.189624 -0.013449 -0.004180 0. 171994
4 0.067856 0.0472821 4 0.017688 0.007856 ©0.008998 (.034543 | 4 0.029320 —0.004775 0.003916 0.028460
G (2,9 G (2.3} el 3,3}
5 7 8 9 11 12 9 11 12
5  0.173718  0.017688 -0.032038 0.159369)%  0.229661 -0.001360 -0.029511 0.198790| 9 0.399045 -0.018228 -0.025829 0,354987
7 0.007856  0.00B998 0.034543)7  0.029320 -0.004775 0.003916 0.028460 { 11 0.005138 -0.005918 -0.019008
8 0.032539 0.009499 |8 -0.017626 -0.010824 (.020365 ~0,008086 | 12 2.013381 -0,018365
H(l,l) H@,3) H(l,!)
1 0,142607 0.103018 0. 0.24562511  0.142607 0. 0. 1 0.206994 0. 0.
2 0.118477 0. 0,22149512 0.103018 0, 0. 2 0.203583 0. 0.
4 0. 0, 4 0. 0. 0. 4 0. Q. Q.
H @) H 4,9 H &)
5 0.142607 0. 0. 5 0206994 0. Q. 9 0.402137 0. 0.
7 0. 0. 7 0. Q. 0. 1t 0, Q.
8 0. 8 o 0. 0. 12 ¢.
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47T LaLOE LEUIMLE] SJdMpLing wuvanances of CSILMALS] O [IICIeNTS; OMPULarnon ol $$L.

L= (gt h) - L), LG A = pi(ZA) - gD, L) = IV ) — G

1y G 17 (,3) 1y G
1 2 4 5 7 8 9 11 12
1 0.001520 0,000041 0.000292 0.001854 | 1 2.000000 0.000143 0.456302 0.436444 1 0.036027 -0.596381 0.845164 0.284810
2 - 0.000048 - 0.000044 ~0.000052 1 2 0.120806 0.000214 0.683373 0,804396 2 ~0.104540 —0.299849 0.424933 0.020543
4 0.000000 0.006247 | 4 -0.000138 0.0¢0000 0.000085 —0,000052 4 0.274090 -0,203256 0.288046 0.358879
1y (3,2) 1y (1,8) 17 (3.3)
5 7 8 9 13! 12 9 11 12
5 —0.003366  —0.000067 0.000278 ~0.003156 | § -0.032760 0.304171 0.092976 0. 364388 9 0.000278 0.000069 -0.000179 0.009108
7 0.000000 0.000000 =0, 000067 | 7 ~1.398412 0.103666 0.031688 - 1263057 § 11 0.000060 0.000000 0. 000009
8 0,000000 0.000277 | 8 -0.391533 0029025 0.008872 -0,353635 | 12 0.000000 -0.000180
Ty (1,3} . @,1) ip ()
1 2 4 5 7 B 9 i1 12
1 2.021928 0.982151 0. 3.004180 | 1 -1.089819 0. 0. 1 2.812110 0. 0.
2 0.984498 0. L.956750 | 2 ~—0.529433 0 0. 2 2.818543 0. 0.
4 Q. 4 0, Q. Q. 4 0. 0. 0.
1y (1,2) 1y (a,2) 1y b2}
5 7 8 9 11 12 9 11 12
5 1.124451 0. G. 5 =1.920359 0 0. 9 13.720959 0. 0.
7 a. G. 7 0. 0. 0. 11 1N 0.
8 0. B Q. Q. Q. 12 0.
1y i L) 3 (1.8}
1 2 4 5 7 8 9 11 12
I 31.235758 40.216095 28.905375 100357229 | 1 ~17.653904 —]6.3368I3 9.917088 - 24,073629 | 77.551613 2.377006 57.998459 137.927079
2 124933347 39.096751 204.246194 | 2 ~22.729434 =22.096801 -32.246019 — 77.0672255 2 172.850512 B5.765214 139.058985 397.674711
4 36.638514 104.640640 | 4 —16.336813 -20.707448 = 7.G78220 = 44.722481 4 75.723707 - 1170514 72.846809 147, 400003
3y (@,3) 3y G y 0w
5 7 8 9 11 12 9 11 12
5 19.040921 17.620349 - 10.696245 25,965025 | 5 -~58.632B04 ~ 1.797132 —43.849665 ~104.279602| O 490.310987 157.812322 388.592480 1036.715789
7 22.334373 8.281475 48.236198 | 7 =537.250818 0.884965 —55.075743 —111.441595 |11 182.291891 118.373044 438.477238
8 135.913461 133498691 | 8 —30.098784 -54.771129 -76.492416 -161.362330¢ |12 376.303545 883.269070
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TABLE 24.2—L.1.5.: Estimated Sampling Covariances of Estimated Coefficients

(VTXg L **)-1 ealuated at final estimate

at at a; al aj al al al al
al 0.021707 —0.002374 —0.014175 0,009846 —0.008375 —0.000665 ~0.002047 0.001386 .001702
) 0.001755 —0.000038 0.002595 —0.002284 ©.000723 ~0.000020 —0,000556 0.000039
al 0.014316 =0.011076 0.011348 —0.000370 0.001437 —0.000143 —0.001693
a} 0.053637 -0.044588 0.007194 —0.000749 0.001325 0.001186
a? 0.042537 ~0.006389 0.001359 --0.001685 ~0.001184
al 0.001922 —0.000601 0.000405 0.000694
at 0.001608 ~0.000618 —0.001428
al 0.000961 0.000343
al 0.001647

TABLE 25=F.1.D.: with &1, = @ 3 = & 23 = k- Computation of & 4 (V{41

Fa(vitih-t

1 2z 3 4
1 21.114503 3.783108 -21.494899 — 4.318347
2 1.828398 — 5.427387 - 0.791682
3 26.633397 2.393940
4 3.935%93
— 0.915636 - 0.607563 2. 105051 1.219503

F (v @)

5 [ ? )
b] 10.731345 —-13.184889 0.605944 12.326253
G 27,489386 - 9.155030 —24.416219
7 7.802827 7.508922
B 22.020451
10.478653 ~19.266752 6.762663 17.439408

T (V O3n-t

9 10 11 12
9 10.042576 20.917537 2.517486 2.252839
10 47.596437 6.199208 6.953360
11 1.631338 0.860185
12 2.149008
35.730440 21.666545 11,208219 12.215395
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TABLE 26=F LD.: Reduced Matrices § 9= (D B Gty Gih-1cp £y

(BL)°F (v inh=

(B3 F v By

(530 Faalv G2y

1 2 3 4 5 [ 7 8 9 10 It 12z
yy 21.114503 3.783108 -21.494899 -4,318347 10.731345 -—13.184889 0.605944 12.326253 10.042576  20.917537 2.517486  2.252839
Y2 3.783108 1.828398 . 5.427387 -0.791682 0. Q. g, Q. -10.874961 ~26.678899 —3.681722 -4.700521
vy —21.494899 — 5.427387  26.633397 2.393940 —13.184889  27.489386 - 9.155030 -24.416219 0. Q. a. 0.
3.402711 0.184119 - 0.283888 ..2.716090 — 2.453544 14.304497 — 8.549085 ~12.089966 — 0.832385 - 5.761361 —1.164236 —2.447681
i Q)
Y ¥a ¥a Z, %2 ER) Za 25 Zs Zy
¥ 21.114503 3,783108 -21.494899 | 3.783108 -4.318347  21.494899 0. 21.494899 -21.4948%9 0. 24.362371
¥a 3.783108 1.828398 - 5.427387 | 1.828398 -0.791682 5.427387 0. 5.427387 - 5.427387 0. 6.648221
¥y —21.494899 - 5.42738B7  26.633397 | -5.427387  2.393940 -26.633397 Q. -26.633397 26.633397 0. —29.955733
i @)
Y1 Ya Ya Ty Ty z3 Z g, zy Ze Ty
¥y 10,731345 Q. —-13.184889 { 0. 0.603944  12.326253 0. 0. 0. &, 10.478653
¥a 0. Q. 0. Q. 0, 0. g. 0. 0. Q. 0.
ys —13.184889 0. 27.489386 | 0. -9.155030 -24.416219 0. 0. 0. 0, —19.266752
I Q)
Ya ¥a Ys z, Z, EE) I, LT zy Ty
yi  10.042576 -10.874961 0. 0, 0. o 2.517486 10042376 0. 2.252839 13.980516
y3 -—10.874961  15.803937 0. 0. Q. Q. - 3.681722 ~10.874961 0. —4.700521 ~14.328229
¥a 0. 0. Q. Q. 0. g, 0. Q. 0. & 43
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TABLE 27=—F,1.D.: l.ast iteration; Final Approzimation to A

B ay (adjoint B (1,)) ‘ B ('11,) check: BB~ =1
~0.979914 -~ (.200001 1. —~0.579827 —~ 0.579827 0.200001 — 1,118965 - 1.118965 0.385908 1.000 0.000 0.000
0.231163 0. - 1. —0.420172 — 0.420172 — 0.748750 - 0.810861 — 0.810861 —1.444959 0.000 1.000 0.000
0.420172 = 0.579827 0. =0.134034 - 0.652216 0.046233 — 0.258664 — 1.258604 0.089221 0.000 0.0006 1.000
—0,328577 — 0.779828 0. det B = 0.518181

Aay+ 8 d4ay

Y1 Yz Y3 LBl Z;3 Zs Z4 Zs Zg Zq
yy=21.134019 — 4.311874 21.563806 —4.311874  4.854801 -21. 563806 O. —21.563806 21.563806 O. ~24.902967
yy 4.587340 0, -19.8464066 Q. 10.845077 16 939165 0. 0. 0. 0. 12525117
vy 19.589995 —27.033440 0. Q. 0, 6.291610 19.589995 0. 7.661587 26,099748

A (1%) +AA (13
normalized: first row divided by 21.563806, second row by 19.846466, third row by 46.623436

Y ¥Ya b z, Zy Za Zy Zy Ze Zy
y 1 — 0.980069 - 0.199958 1. -0.199958  0.225136 - 1. 0 - 1. 1. 0. - 1.154850
¥ 0.231141 0. - 1. 0. 0.546448 0.853510 0 0. Q. 0. 0.631100
ya 0.420174 — 0.579825 0. 0. 0. 0. 0 134945 0.420174 1. 0.164329 0.559798




TABLE 28=—F.1.D.:

Summary of Successive Approximations t¢c B

L.1.S.E. F.LD.

B B ) B ) B i) B ) Bys) B (s) B
-1.22 ~0,94741 —0.96788 ~0.95457 -0.95642 —0,95550 —0.95565 —0.955580
—0.18 ~0.21369 —0.21449 -0.21442 —0.21438 —0.21436 —0.21436 —0.214357

0.21 0.30967 0.25231 0.26043 0.25604 0.25669 0.25637 0.256420
0.53 0.52640 0.53136 0.53036 0.53062 0.53059 0.53056 0.421668
B Bs) B (1) B (1) 8 (2 B (1) (B (1q))
-0.985812 -0.978368 —0.980587 -0.979775 —0.979970 —0.979914 (—0.980069)
~0.200040 -0.200197 -0.199967 -0.200011 ~0.199997 —0.200001 (—0.19995%)
0.226041 0.233740 0.230565 0.234407 0.231086 0.231163 ( 0.231141)
0.421670 0.420026 0.420242 0.420155 0.420180 0.420172 { 0.420175)
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TABLE 29—F.LD.: Estimated Sampling Covariances of Estimated Coetlicients; Computation of L ., (c;') ’c{

1

4 (uy

1
2 gaay

]
T uy

1 2 3 4 5 6 7 8 9 i0 11 12
—0.979914 -0.200001 1, 0.225058 0.231163 -1, 0.540429  0.853%13 6.420172 1. 0.134945  0.16433¢  2.395698
B=8,, {adjoiat B)” g theck: BB™' = {
-0.979914 -0,200001 1. -0.579827 —0.579827 Q.200001 —-1.118965 —1.118965  0.385968 L000 0.000 0.090
0.231163 0. ~1. ~0,420172 -0.420172 -0.748750 ~0.B10861 -0.810B61  «.444959 0.000 1.000 0.000
0.420172 -0.579827 0. ~0,134034  -0.652216  0.046233 —0.258664 -1.258664  0.0B9221 9.000 0.000 t.000
~G.328577 -0.779828 0. det Ay, = 0.518181
1 2 3 4 5 6 7 8 9 10 11 12
*
-
=0.051854 ~0,037631 —0.011971  0.000000 -—0.056376 —0.063417 0.000000 0.000000 -0.022715  0.030993  0.0000060  0.000000 —0.212974
! *
-1.118965 -0.810861 -0.258664 0. -1.118965 ~1.258664 0. 0. -1.058990 1.444959 0. o. -4, 180152
n L]
—L.067111 -0.773229 «0.246691 0.000000 —1.062589 ~1.195240 0.000000 0.000000 -1.036275 1.413966  0.600000  0.000000 ~3,.967177
1 2 3 3 6 7 2 10 11
1. 1. i ir ar i1, 3 1. LYl
C‘ (2 CS Cl tl [ N [ 1 < 3 L'J
1 ~1.118965 -1.118865 0,385968 5 -1.118965 «1,11B9G5 0.385968 9 -1.929826 -1.929826 -1.0%8990
2 0810861 -0.B10BGL -—1.44495% 6 —0.258664 ~1.258664 0.089221 10 0.810861  0.810861 1.444959
3 -0.258664 -1.238604 0.089221 70, 0. 0. 1 § 0. .
4 0. 0. 0. 3 9. Q. a, 1z 0. 0. Q.
—2, 188490 -3, 1884%0 -0, 859769 —L377629 -2.377629 0.475190 ~1. 118965 ~L11896%  0.385968
1y () 1y (1) aL(l.:)
1 2 3 4 5 6 ? 8 9 10 11 12
1 1.252084 0.907325 0.289436 0. 1 1.252084 0.289436 0. g. 1 -0,744832  0.312966 0, 0.
2 G.657495  0.209740 0. 2 0.907325 £.209740 0. Q. 2 2,788521 -1.171661 0. Q.
3 0.066907 0. 3 1.40B402 2.325571 0. 0. 3 4,172182 0.072346 4. .
4 0, 4 0. 0. 0. 0. 4 0. Q. 9. a.
2.448846 1774562 0.566084 0. 3567811 0.824748 0. a. L.871486 —0.786348 . Q.
1y 2,2) 1 () tp {3,0)
bl 6 7 B 2 19 11 12 9 10 11 12
5 1.252084  1.408402 D, 0. 5 —0,744852 0.312966 0, 0. 9 1,121461 -1.5301%8 0. 0.
4 1.584235 0. [t G —0.172182 0.072346 0. 0. 19 2.087907 Q. 0.
7 Q. 0. 700 0. 9. Q. 11 0. 0.
8 Q. 3 0. 0. 0. Q. 12 0.
2.660486 2992637 0. 0. —0.917035 0.385313 0. 9. -0.408737  0.557708 0, 0.




TABLE 30—F.LD.: Estimated Sampling Covariances of Estimated Coefficients; Computation of ~L **_ap ) 4 3 (i) and (1/T)(-L *

*

)—1

- G 2 (C;..)c{’ + Gy (4,7}

1 2 3 4 5 6 7 8 9 10 1 12
1 2.000100 1756620 1.016845 0.549140 1.252084 0.289436 O, 0 —0.744852 0.312966 0. 0. 6.432339
2 3.055301  1.317230 0.740566 0.007325 0.209740 0. 0 2.788521 ~1.171661 0. 0. 9.603651
3 0.869313  0.532850 1.408402 0.325571 0. 0 —0.172182 0.072346 0. 0. 5.370384
4 0.681488 0. 0. 0. 0. 0. 0. 0. 0. 2.504044
5. 2.000100 1.635060 0.549140 —0.354650 —0.744852 0.312966 0. 0. 6.965575
6 5.154297 0.720197 3.586015 —0.172182 0.072346 0. 0. 11,820480
7 0.681488 0.258778 0. 0. 0. 0. 2.209603
8 4.131854 0. 0. 0. 0. 7.621997
9 5.855035 —4.288455 1.377180 3.410184  7.300207
10 3.757217 —0.067890 —2.122200 ~ 4022464
i1 1.617000  1.040760  3.067050
12 3.340734  5.669379
(%)
(L/TH-L ¥ ™Y % 102 = 0.047619(=L* ™) x 102
1 2 3 4 5 6 7 8 9 10 11 12
b 4.382355  1.056607 -~5.029688 —0.746813 —1.125159 1.00027G 0.221139 —0.978560 —1.521864 —1.115355 0.105943 0.811935 — 2 939184
2 ~0.382852  0.148313 ~0.551332 —0.120714 0.107316 0.023725 -0.104986 2.267318 1.661688 —0.157837 —1.209644 2 737602
3 3.699112  0.999423  5.246104 —4.663830 —1.031073 4.562580 —0.524593 -0.384468 0.036519 0.279877  3.338276
i 7.406976 -3.064059 2.723974 0.602212 ~2.664B38 —0.827384 —0.606379 0.057597 0.441420  3.770707
5 -1.276011 0301774 0Q.871046 ~0.425986 —0.622583 —0.456283 0.043340 0.332156 — 0.296375
6 3.333542 —2.742510 —2.695499 0.553482 0.405630 —0.038530 —0.205290 — 2.009556
7 8.452721 1.925581 0.122363 0.080678 —0.008518 -0.065282  8.461082
8 3.324733 ~0.541466 ~0.396833 0.037693 0.288879  2.341208
9 ~0.473168 1.008835 0.354567 1.013437  (.808044
10 3.965689 0.695236  1.272920  6.140367
11 3.762115 —1.092304  3.795821
12 1.539853  3.317957




CORRECTIONS TO Statistical Inference in Dynamic Economic Models,
COWLES COMMISSION MONOGRAPH 10

Page 8, lines 3, 11: for equation {1.1) read equations (1.1).

Page 74, line 5: for B89 yead §99

Page 148, equation (3.132) : insert subscripts § = { to right of closing bracket.

Page 153, equation (3.156): insert superseript 7t to right of closing parenthesis in
right-hand member.

Page 158, equation (4.15): for #0° vead X¢*.

Page 159, line 1: for &0 read Xv,

Page 159, line 2: for a(g)e? read plg)X#"; for a read .B(g)

Page 164, equation (4.34): for — read =.

Page 193, line 1: for in that notation, read , in the notation of (4.15),.

Page 193, equations (4.130) and (4.131): for @0 read X'7,

Page 197, equation (4.138): insert subscripts .. to right of M in second member.

Page 316, bottom line: for Wy, read W.

Page 425, line 23: for Bank read Rank.

Page 438, line 29: after variables, endogenous insert p. 8.

Page 438, line 34: afler variables, exogenous, insert p. 8.
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Likelihood function
Conditions, controlled and uncontrolied,
10
Confidence interval, 109
Confidence limits, 80
Confidence region, 85, 91
(Confluenee, 70 fu.



314

Consistency of estimates, 78 fn., 128, 133
140, 150, 170, 176
maximum-likelihood, 146, 163, 170, 176
of reduced form, 140
quasi-maximum-likelihood, 146, 147
Constraints, a priori, 67
see alse Restrictions
Consumers’ expenditure, 76, 88
random shift of, 102
Consumption, 18, 75, 8%
of food, 108
Consumption funciion, estimation of, 76
Continuous probability distribution, 14
Control, i
direct and indirect, 65
price, 9 fn.
Controlled conditions, 10
Controlled structural parameters, 24
Controlled variables, 8, 15, 24
Convergence, stochastic, 78 fn.
Correlation,
of disturbances, 37
multiple, 109-111
serial, 23 fn.
Correlation coefficient, 14
Cost, 1
Cost-of-living index, 87 fn.
Covariance matrix of disiurbances, 121
diagonal, full-information method
with, 236
estimation of , 143
no restrictions on,
method with, 236
nonsingularity of, F21
Covariances,
of disturbances, 121, 143
and variances, asymptotic, of maxi-
mum-iikelihood estimates, 177
Cuycelical regularities of variables, 21

tull-information

Damping ratio. 24
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tions, 57 N
Direct product of matrices, 253
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probability, see Probability distribu-
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correlated, 37
covariance matrix of, 121
diagonal, 236
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distribution of, 15, 145, 207
conditional, 119
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effects of, sampling fluctuations in,
223, 228, 234
and errors, distribution of, 15
estimation of covariances of, 143
of the reduced form, 125
random, 5 fn., 222
see alse Random shifts and Random
shocks
uncorrelated, 162
Doolittle method for matrix inversion,
abbreviated, 238, 242
Dynamic structure, 17, 18
Dynamical system, 61

Economic relations, 3, 5
~Economic structure, probabilistic and
stochastic concepts of, 15
Economic theory, 26, 27
Economic variables, 10
Economy of computation, 161, 163, 177
Efficiency of estimates, 130, 141, 213, 215,
220
agymptotic, 129, 130, 133, 140, 144, 147,
150, 163, 170, 176, 213, 215, 220
loss of, 203
maximum-likelihood, 147, 150, 163, 170,
176, 213, 215, 220
of reduced form, 133, 141
Empirical relationships, 28
Empiricism, 49
Employment, stabilization of, 24
Endogenous variables, 4, 6, 12, 15, 27,
36, 42, 52, 56, 115, 119, 120, 123,
124, 145, 148, 152, 221, 222
digtribution of, 13, 36, 125, 145
lagged, 22, 36, 39
linear dependence among, 37 fn.
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observed, 115
past values of, 22
prediction of, 14
in subset, 57
Equation system,
overidentified, 99
stable, 146
Equations,
autonomous, 106
behavior, 104, 121
complete set of, 27, 36
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Equations, complete set of {cont.},
nonlinear, 210
structural, 36, 37, 39, 117
demand, 7-9, 29, 30
derived, 104
difference, 21
of economic behavior, 27
exclusion of variables from, 38
final, 20
of income, 101
institutional, 27, 105
investment, identifiability of, 40
linear structural, reduced form of a
complete set of, 39 '
normak, 150, 155
reduced-form, 15, 17, 20, 39, 109, 134,
138, 151 :
restrictions on the coefficients of, 38
simultaneous, 92
stochastic, 21, 22
structural, see Structural equations
subset of, 54, 164, 166, 170
supply, 24, 30, 104
Equilibrium, 18, 20 fn.
Equilibrium price, 19
Equilibrium quantity, 19
Error model, 118
Errors,
and disturbances, distribution of, 15
of measurement, 6 fn., 93, 97
of observation, 12, 115, 117, 204-206
random, 12
rounding-off, 240
variables subject to, 205
Estimates, .
asymptotic efficiency of, 129, 130, 133,
140, 144, 147, 156, 163, 170, 176, 213,
215, 220
asymptotic unbiasedness of, 140
best, 98
linear unbiased, 132, 133
unbiaged, 78
hiased, 219-221, 235
consistent, 78 fn., 133, 140, 146, 147,
163, 170, 176
desirable propertics of, 127, 128
efficient, see Iifficiency of estimates
least-squares, see least-squares esti-
mates
least variance ratio, 169, 243
generalized, 169
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Estimates {cont.),
limited-information” maximum-likeli-
hood, see Limited-information
maximum-likelihood estimates
maximum-likelihood, see Maximum-
likelihood estimates
quasi-maximum-likelihood, see Quasi-
maximum-likelihood estimates
reduced-form, efficiency of, 133, 141
of residuals, 110
single-equation, 173, 240, 245
of structural parameters, 107
of subsystem of egquations, 259, 261
unbiased, 133, 141, 225
Estimation, 15
biased, 219, 220
of constant terms, 144, 158, 159
of consumption function, 76
of covariance of disturbances, 143
full-information maximum-likelihgod
method of, see Full-information
maximum-likelihood method of
estimation
and identifiability, 176
large-sample, theory of, 124
least-squares method of, 96, 98, 131,
135, 143
indirect, 135, 139, 140, 142, 175, 176
maximum-likelihood, see Maximum-
likelihood method of estimation
methods of, 127
purpose of, 127
of reduced form of structure, 26, 133
of structure, precision of, 16
tests preliminary to, 184
Exogenous vanables, 4, 6, 7, 8, 10, 31-33,
36, 39, 42, 52, 56, 62, 73, 115, 119,
120, 123-125, 145, 210, 222, 226, 232
controlled, 24
distribution of, 119
marginal, 119
not linearly dependent, 37
observable, 12
observed, 115
past and future values of, 7
under policy-maker’s control, 23
in subset, 57
Expectation,
mathematical, 15, 120 fn.
of utility, 16
Expenditure, consumers’, 76, 88, 102
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Experimenter, 65, 72, 73

Experiments, §

Extra information, 139, 141, 165, 182

Extra restrictions, 135 fn., 139, 161-163,
165, 169, 176, 177

F-distribution, 87, 91
F.1.D. method, 237
F.LN.D. method, 237
Firm, 1, 8
Fluctuations, economic, 24
see also Oscillations
Food,
consumption of, 108
demand for, 92, 100, 101, 105
price of, 108
production of, 108
supply of, 102, 103
Full-information  maximum-likelihood
method of estimation, 144, 162,
176, 236, 237
diagonal case, 236, 237, 263, 266
nondiagonal ecase, 236, 237, 252, 255

Gradient method of maximization, 246,
247
Gross national product, 83

Housing, 12 fn.
Human behavior, 26

Identifiability, 35-37, 49, 96, 100, 176, 225
and causal ordering, 6569
criteria of, 37, 126
and estimation, 176
of investment equation, 40
necessary (order) condition for, 38, 71,
138, 140, 141, 173-176, 183
necessary and sufficient (rank) condi-
tion for, 38, 39, 135, 138, 175, 183,
185
failure of, 141
of a parameter, 35, 36
rank criterion for, 39, 43
rank criterion matrix for, 43, 138, 185
restrictions for, 143, 169
minimum requisite, 139, 143, 161-163
of a structural equation, 36, 38
of a strueture, 36, 67
test of, 39, 183, 184
uniform, of reduced form, 126
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Identification,
through disaggregation, 40
lack of, 96, 99
problem of, 27, 99, 125
of structural parameters, 35
see also Identifiability
Identification term, 234
Identities, 27, 121, 142
removal of, 122
savings-investment, 40
Income,
disposable, 76, 83, 88, 108
gross, 84
equation of, 101
multiplier theory of, 102
national, 10, 12
Independent variable, 4
Indeterminacies, 35
Indirect causal dependence, 61
Indirect control, 65
Indirect least-squares estimates,
140, 173, 174
/Indireet least-squares method, 135, 139,
140, 142, 175, 176
Induced investment, 75, 81
Induced variable, 4
Information,
a priori, 99, 136, 143, 161, 162
extra (overidentifying), 139, 141, 165,
182
minimum requisite, 131, 139, 140, 142,
163, 176, 182
see also Knowledge and Restrictions
Initial erop, 18
Initial values of variables, 18
Institutional equation, 106
Institutional rules, 27
Interdependence, 49, 50
Internal variable, 4
Intervention, 65, 66, 69, 71
Investment, 10, 18, 108
aggregate, 14
as autonomous variable, 76
gross, 84, B8
induced, 75, 81
Investment decisions, 14
Investment equation, identifiability of, 40
Investment-savings identity, 40
Investment schedule, 9

139,
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Joint probability distribution, 12, 29, 35,
113, 117, 119, 125, 126, 135, 189
Jointly dependent variables, 4, 10, 101,
105, 116, 122, 123, 201, 237, 238, 240
see also Dependent variables

Keynesian theory, 40
Klein model, 236 In.
Knowledge, 6, 16
a priori, 29, 114, 117
of pust structure, 26
useful, 1, 3, 26
useless, 16
uses of , 25 )
see also Information
kth-order complete subsets of equations,
56

Lag relations, 97
Latent variables, 36, 115, 205
distribution of, 29, 36, 116, 117
Leaders, 14
Least-squares estimates, 89, 131-133, 150,
151
asymptotically efficient, 133
bias in, 134, 221, 235
asymptotic, 221, 225, 229, 230, 232,
235
direct, 133
equality of, to maximum-likelihood
estimates, 147
indirect, 139, 140, 173, 174
of reduced form, 133, 141
Least-squares methods of estimation, 96,
98, 131, 143
applied to structural equations, 135
indirect, 135, 139, 140, 142, 175, 176
Least-squares regression, 79, 80, 90, 94
Least variance ratio estimates, 169, 243
generalized, 169
Least variance ratio principle, 164, 166,
169, 175
gencralizesl, 170
L. (Newton) method, 254, 258, 263, 266
Likelihood function, 144, 149, 151, 179,
190
concentraled, 157, 161, 166, 168, 171,
192
logarithmic, 145, 149, 154, 158, 160,
161, 177, 192, 241, 259, 264
stepwise maximization of, 191, 192
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Likelihood ratio criterion, 179, 184
Likelihood ratio principle, 196
Limited-information maximum-likeli-
hood estimates, 165, 169, 171, 175,
263
of single equation, 173, 240, 245
of subsystem of equations, 259, 261
Limited-information  maximum-likeli-
hood method of estimation, 99,
107, 126, 162, 164, 166, 174-176, 200,
213, 236
as applied to single equation, 164, 166,
171, 173, 175, 176, 236, 237, 240, 267,
268
as applied to subsystem of equations,
163, 164, 170, 200, 213, 237, 259, 261
Linear model, 53
complete, without errors of observa-
tion, 117
identifiability criteria in; 37
identifiability of a structural equation
of, 38
Linear structural equations, reduced
form of eomplete set of, 39
Linear structure, 52, 53 fn.
causally ordered, 56
coefficient matrix of, 53, 54, 65
completely integrated, 56
self-contained, 52-55, 61
unmintegrated, 56
Linear trend, 3
L.1.S. method, 237
L.1.8.E. method, 236, 237
Logarithmic likelihood function, 145, 149,
151, 158, 160, 161, 177, 192, 241, 252,
250, 264

Macrodynamic model, 100
Macro-economics, 75
Maintained hypothesis, 179
Maintained structure, 4
Marginal propensity,

to consume, 75, 89

to invest, 75
Market,

free, 11

retail, 102
Market data, 97
Markoff process, 120 fn.
Markoff theorem, 78, 80, 81, 85, 133

SUBJECT INDEX

Mathematical expectation, 15, 120 fn.
Matrices,

basie, 250 fn.

characteristic roots of, 187, 188, 244

coefficient, see Coefficient matrix

covariance, of disturbances, 121, 143,
236

direct product of, 253

direct sum of, 186 fn.

Doolittle method for inversion of, ab-
breviated, 238, 242

elementary row transformations of, 68

moment, see Moment matrix

positive definiteness of, 186, 189

positive semidefiniteness of, 186, 189

rank criterion, 43

reduced, 255

semireduced, 256

square, trace of, 153

Maximization,

gradient method of , 246, 247
of profit, 3
stepwise, 156, 164, 165
of likelihood function, 191, 192

Maximum-likelihood estimates, 132, 144,

146,150, 151,176,177

asymptotic efficiency of, 147

asymptotic normality of, 177

agymptotic variances and covariances
of, 177

consistency of, 146, 147, 163, 170, 176

efficiency of, 147, 150, 163, 170, 176,
213, 215, 220

equality of, to least-squares estimates,
147

limited-information, see Limited-infor-
mation maximum-likelihood esti-
mates

properties of, 146

quasgi-, see Quasi-maximum-likelihood
estimates

sampling variance {and covariance)
of, 158, 175, 177, 202, 210, 246, 259,
263, 267, 268

Maximum-likelihood method of estima-

tion, 143, 156, 176

of coefficients of a single structural
equation, 166, 171 ‘

of coeflicients of a subset, 164, 170, 259,
261
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Maximum-likelihood method of estima-
tion (cont.),
full-information, see Full-information
maximum-likelihood method of
estimation
limited-information, see Limited-in-
formation maximum-likelihood
method of estimation
Methodology of science, 50
Minimum reguisite information (or num-
ber of restrictions), 131, 139, 140,
142, 143, 161-163, 176, 182
Model, 27, 29, 115, 117, 179
choice of, #4
complete, 113, 117
linear, without errors of observation,
117
error, 118
intervention in, 66
Klein, 236 n.
linear, see Linear model
macrodynamic, 100
shock, 118
shock-error, 118
single-equation, 131, 132, 147
statistical test of, 45
true, 106
Moment matrix, 239
admissible, 209
positive definiteness of, 189
positive semidefiniteness of, 172 fn.,
189
Moments,
second-order, of the observations,
148, 149, 239
definition of, 158, 159 fn., 239 {n.
structural, 180
Multiple correlation, 109-111
Multiplier, 75, 89
Multiplier theory of income, 102

Newton method, see £, method
Noncontralled conditions, 10
Noneconomic factors, 104
Noneconomic variables, 10, 21
Nonlinear equations, 210
Nonsingularity,

of By (or B), 118, 125

of M.,, 149, 207

of *Mex, =, 181
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Nonsingularity (conl.},
of 2, 126, 168
of T or 21 {covariance matrix of dis-
turbances), 121, 168, 207
of Wy, and Wiaa, 168
Normal equations, 150, 155
Normality, asymptotie, 128, 177
Normalization, 174, 244
rule of, 38, 98, 122, 138, 160, 172, 246
Normalizing elements, 252
Notation, 115, 122, 238
vector or matrix, 115 fn., 136, 250 in.,
252
Null hypothesis, 179

Observations,
and eausal ordering, 63, 69
distribution of, 35, 113, 125, 126, 135,
179, 190
errots of, 12, 115, 117-
number of, 5
second-order moments of, 148, 149, 239
Observed variables, 24, 115
Operationalism, 49, 63-67, 69
Order (necessary) condition for identifi-
sbility, 38, 71, 138, 140, 141, 173-
176, 183
Ordering, causal, see Causal ordering
Oscillations,
amplitude of, 22, 24
damped, 19
explosive, 20 fn., 22
of ineome, 17
Cutput, best, 2, 5, 6
Overidentifying restrictions, 99, 135 fn.,
139, 140, 161-163, 165, 169, 176, 177
ignoring, 162, 176, 203, 213

Parameters, 122
free, 249
identifiability of, see Identifiability
and Identification
of reduced form, 137 fn.
structural, see Structural parameters
Path, 17
s method, 254, 258 fu., 265
Plim, se¢ Probability limit
Policy, 8, 23
best, 26
Policy-maker, 10, 23
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Positive definiteness,
definition of, 186
of moment matrix, 189
of *Mxx, xx, 181
of @, 154 fn., 181
of 2,121
of W.m, 172
Positive semidefiniteness,
definition of, 186
of moment matrix, 172 fn., 189
of 2, 121
Precedence, direct, of a subset, 57
Precedence relation, 61
Precision of estimate of structure, 16
Predetermined variables, 23, 39, 44, 101,
104, 105, 111, 122, 124, 145, 169,
200, 201, 213, 238, 240
effect of ignoring, 213, 215, 220
Prediction interval, 14, 23
Predictions, 46
under changes in structure, 47
distribution of, 127
of endogenous variables, 14
statistical, 14, 17
useless, 14
Preferences, 10, 11, 23
Prices, 1, 18
equilibrium, 19
fixed, 11
of food, 108
received by farmers, 108
rigidity of, 24
Price control, 9 fn.
Probabilistic concept of economie struc-
ture, 15
Probability distribution, 12, 13, 29
continuous, 14
joint, 12
of endogenous variables, 13, 36, 145
of latent variables, 117
of observation errors, 12
of observations, 35, 113, 125, 126, 135,
189
of shocks or disturbances, 13, 29, 119,
120
Probability limit, 78 fn., 202 fn., 207-209
Probability statement, 12
Production, 10
of food, 108

SUBJECT INDEX

Profit, 1
maximization of, 3
Psychological factors, 8

Quasi-maximum-likelihood  estimates,
132, 144, 146, 202, 203, 205, 206
asymptotic normality of, 210, 212
consistency of, 146, 147, 209, 210, 212

Random disturbances, 5 fn., 222
Random errors, 12
Random shifts, 13, 15, 21, 77, 102
Random shocks, 12, 21
Random variables, 12, 13, 15, 21, 20
Rank (necessary and sufhicient} condi-
tion for identifiability, 38, 39, 135,
138, 175, 183, 185
failure of, 141
Reduced form, 4-6, 95, 96, 98, 125, 133,
136, 147, 211
coefficients of equations of, 39, 137 fn.
restrictions on, 138
of a complete set of linear structural
eguations, 39
disturbances of, 125
method of, 126
parameters of, 137 in.
uniform identifiability of, 126
Reduced-form equations, 15, 17, 206, 39,
109, 134, 138, 151
Reduced-form estimates, 26
efficiency of, 133, 141
properties of, 133
unbiased, 141
see alse Single-equation estimates
Reduced matrix, 255
Regression, least-squares, 79, 80, 90, 94
Relations,
agymmetrieal, 51, 52
economie, 3, 5 fn.
empirical, 28
exact, 5 fn., 14
functional, 49, 50
lag, 97
of precedence, 61
structural, 3-6, 15, 28, 110, 117
Rent control, 8
R-equivalent coefficient matrices, 68
Residuals, 155, 160
estimates of, 110
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Resolved form, 20 fn.
Reastrictions, 136, 169
a priort, 67, 121, 125, 160-162, 164, 176,
183
on coefficients of reduced form, 138
on coefficients of specified equations,
38
minimum requisite for identifiability,
139, 143, 161-163

none, on covariance matrix of disturb- -

ances, 239
overidentifying (extra), 99, 135 fn_,
139, 161-163, 165, 169, 176, 177
- ignoring, 162, 176, 203, 213
on struetural equation, test of, 178
Retail market, 102
R method, 264, 262
Rigidity of prices and wages, 24
R-transformations, 68

Safety, 15
Samples, 114
large, 16
theory of estimation in, 124
repeated, 128 ‘
Sampling variances (and covariances)
of maximum-likelihood estimates,
158, 175, 177, 202, 210, 246, 259,
263, 267, 268
Savings, gross business, 83
Savings-investment identity, 40
Schedule,
demand, 9, 29, 30
investment, 9
supply, 29, 30
time, 19
Seasonal adjustment, 9
Seasons, 9
Semireduced matrices, 256
Separated form, 20 fn., 21 fn.
Serial correlation, 23 fn.
Shifts, 29
of consumers’ expenditure, 102
of demand and supply schedules, 29
in investment schedule, 9
random, 13, 15, 21, 77, 102
see also Random disturbances and
Random shocks
Shock-absorbers, 24

321

Shock model, 118
Shock-error model, 118
Shocks, 12, 115
independence of, 23
probability distribution of, 13
random, 12, 21
see also Random disturbances and
Random shifts
as stochastic process, 23
Simultanecus equations approach, 42
Single-equation estimates, 173, 240, 245
Single-equation method, 164, 166, 171,
173, 175, 176, 236, 237, 240, 267, 268
Single-equation model, 131, 132, 147
Slope of demand and supply schedules,
29, 30
Specification, 67
Stabilization of employment, 24
Standard deviation, 14
Statistical data, 28
Statistical inference, 28
Statistical prediction, 14, 17
Statistical test,
of identifiability, 39, 183, 184
of model, 45
of restrictions on one structural equa-
tion, 178
Steepest ascent, 247, 254, 258, 261, 264
with respect to metric, 247, 248
Stepwise maximization, 156, 164, 165
of likelihood function, 191, 192
Stochastic concept of economic struc-
ture, 15, 22
Btochastic convergence, 78 fn.
Stochastic equations, 21, 22
Stochastic process, 22
shocks as, 23
Stocks, 105
S-transformations, 68
Structural change, 9, 26, 133
planned, 8
Structural coefficients, 11
Struetural equations, 5, 7, 27, 29, 79 in.,
106, 118, 134, 136
application of least-squares methods
to, 135
coefficients of, 122, 135 fn.
complete set of, 36, 37, 39, 117
final system of, 109
identifiability of, 36, 38
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Structural equations, identifiability of
{cont.),
order (necessary)} condition for, 38,
71, 138, 140, 141, 173-176, 183
rank (necessary and sufficient) con-
dition for, 38, 39, 135, 138, 175, 183,
185
test of, 39, 183, 184
and intervention, 66
normalization of, 38, 98, 122, 138, 160,
172, 174, 244, 246
regtrictions on, test of, 178
single, maximum-likelihood estima-
tion of coefficients of, 166, 171
subset of, 164, 170
Structural moments, 180
Structural parameters, 3-8, 79 fn.
controlled, 24
estimates of, 107
identifiability of, see Identifiabiiity
see also Estimates
Structural relations, 3-6, 15, 28, 110, 117
Structure, 3, 7, 10, 13, 14, 29, 36, 115117
changes in, 4, 9, 16, 17, 24, 26, 115
expected or intended, 6, 17
future, 26
prediction under, 47
complete, 67 fn., 117
derived, 56
of first order, 56
of second order, 56
dynamic, 17, 18
economic, probabilistic or stochastic
concepts of, 15
estimation of, 26
identifiability of, 36, 67
intervention in, 65
hnear, see Linear structure
maintained, 4
new, 16
nonstochastic, 22
observationally equivalent, 36
old, 16
past, 6, 8, 23
knowledge of, 26
precision of estimate of, 16
reduced form of, estimation of, 26, 133
sectional, 62
stochastic, 22
“Student’’ {-distribution, 81

Subset of equations, 166
coefficients of, maximum-likelihood
estimation of , 164, 170, 259, 261
complete, 67 fn., 69, 72
of kth order, 56
of zero order, 56
direct precedence of, 57
minimal, self-contained, 55
sectional, 54
self-contained, 54, 56
variable endogenous in, 57
variable exogenous in, 57
Subsystem-of -equations estimates, 259,
261
Subsystem-of -equations method, 163,
164, 170, 200, 213, 237, 259, 261
Suppliers, behavior of, 18
Supply, 9, 11
of feod, 102, 103
Supply equation (funection, schedule),

29, 30, 94, 104
Tax, 1
Tax rate,
best, 2
new, 6
old, 6, 8, 16

Tax revenue, 2, 10
Technician, 10, 11, 26
Technological factors, 8
Technological laws, 27
Theory, 5
economic, 26, 27
Keynesian, 40
of large-sample estimation, 124
Time,
discrete notion of, 116
sequence in, 51
Time lags, 37
Time path of variables, 17
Time schedule, 19
Time series,
annual, 23
exogenous, 97
quarterly, 23
seagonal adjustment of, 9
weekly, 23
Trace, of square matrix, 153
Trend, 42
hinear, 3
True mode!, 106
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Unbiasedness of estimates, 130, 133, 141,
225

asymptotic, 140

of reduced-form estimates, 141
Uncontrolled conditions, 10
Uncontrolled variables, 8
Unilateral coupling, 61
Urobserved variables, 115
Useful knowledge, 1, 3, 26
Useless knowledge, 16
Useless predictions, 14
Utility, 15

expectation of, 16
Utility funetion, 11

Variables,
autonomous, 4
controlled, 8, 15, 24
cyclical regularities of, 21
decision, 3, 8
future value of, 7
dependent, 39, 134, 145, 169
economic, 10
endogenous, see Endogenous variables
exclusion of | from equations, 38
exogenous, se¢ Exogenous variables
external, 4
independent, 4
induced, 4
initial values of, 1§
internal, 4
jointly dependent, 4, 10, 101, 105, 116,
122, 123, 201, 237, 238, 240
lagged endogenocus, linear dependence
among, 37 fn.
latent, see Latent variables
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Variables (cont.),
noneconomic, 10, 21
observed, 29, 115
omigsion of, 203
path of, 17
predetermined, 23, 39, 44, 101, 104, 105,
111, 122, 124, 145, 169, 200, 201,
213, 238, 240
effect of ignoring, 213, 215, 220
random, 12, 13, 15,21, 29
rate of change of, {8
subject to error, 205
time path of, 17
uncontrolied, 8
unobsgerved, 115
virtual, 205
Variance, 21
and covariance,
asymptotie, of maximum-likelihood
estimates, 177
sampling, of maximum-likelihood
estimates, 158, 175, 177, 202, 210,
246, 250, 263, 267, 268
generalized, 170
Variance ratio, 168, 169, 174
generalized, 169-171
least, 164, 166, 169, 170, 175, 243
Virtual variable, 205

Wages, rigidity of, 24

Wave frequency, 24

Waves, amplitudes of, 22, 24
Weather, 8, 14, 21

Zero-order complete subsets, 56





