
1) Recall the assumptions introduced with the linear model:

A0 The data (Yi, Xi)
N
i=1 is iid

A1 The data has linear representation: Yi = Xiβ + ϵi

A2 Strict exogeneity: E[ϵi|Xi] = 0.

A3 Rank: if dim(X) = K, then the data X has K linearly independent columns (Rank(X) = K)

A4 Spherical errors/Homoskedasticity: V[ϵi|Xi] = σ2.

1. State the assumptions necessary to prove that the OLS estimator β̂ is a consistent estimator of
the relationship between X and Y in conditional expectation E[Y |X]

2. State the assumptions necessary to prove that the OLS estimator β̂ is a consistent estimator of
the causal effect of each variable X on Y .

3. State which assumptions are necessary to derive the following expression for the asymptotic vari-
ance of β̂, V(β̂):

V[β̂] = E[X ′
iXi]

−1σ
2

N

Review your notes for answers to these questions.

2) Suppose you have iid data (Ci, Ii) where Ci ∈ {0, 1} indicates whether an individual attends college,
and Ii is a measure of parental income. You want to estimate the relationship:

E[C|I] = β0 + β1I

1. Describe your estimator β̂ for β = (β0, β1). State the formula you will use.
Check your notes!

2. Describe the asymptotic distribution of β̂.
Check your notes!

3. Propose a way to estimate this asymptotic distribution, and use this to construct a (1−α)×100%
confidence interval for β1.
Check your notes!

4. Are you comfortable with concluding that your estimate of β1 is also an estimate if the causal
effect of parental income on college attendance? Why or why not?
You probably shouldn’t be. To the extent that parental income is associated with ability and
preferences, and that these traits may also determine the decision to attend college, the relationship
we have estimated will include those causal pathways also, and does not isolate the causal effect
of parental income alone.
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3) Consider the model:
Yi = α +Xiβ + ϵi.

Notice that α is now the constant term, and so Xi does not contain a 1 in the first column. Further
assume that assumptions A0-A4 still hold.

1. Let µX = E[X] and X̂i = Xi − µX . Write Yi in terms of X̂i and ϵi.
Yi = α + µXβ + X̂iβ + ϵi

2. Does the equation you wrote above still satisfy A0-A4?
Yes.

3. Based on this, do you expect any difference between estimating β using X compared to X̂?
No. Given that A0-A4 still hold, OLS using X̂ will be a consistent and asymptotically normal
estimator of β.

4) Consider the linear model:
Yi = β0 +X1,iβ1 +X2,iβ2 + ϵ∗i

Suppose that E[ϵ∗i |X1,i, X2,i] = 0 and that X1,i and X2,i are independent. Let E[X1,i] = µ1 and E[X2,i] =
µ2.

1. Calculate E[Yi|X1,i]

E[Yi|X1,i] = E[β0 +X1,iβ1 +X2,iβ2 + ϵ∗i |X1,i]

= β0 +X1,iβ1 + E[X2,iβ2|X1,i] + E[ϵ∗i |X1,i]

= β0 +X1,iβ1 + µ2β2 + E[E[ϵ∗i |X2,i, X1,i]|X1,i]

= β0 +X1,iβ1 + µ2β2

where the third line uses that X1,i and X2,i are independent, and the law of iterated expectations.

2. Define ϵi = Yi − E[Yi|X1,i] and write Yi in terms of X1,i and ϵi.
Given the above working we get

Yi = β0 + µ2β2 +X1,iβ1 + ϵi

3. Use the above two steps to argue that if we run a regression of Y on X1,i without X2,i, we still
recover a consistent estimator of β1.
The above two steps imply that E[ϵi|X1,i] = 0, and hence if the data is iid, the OLS coefficient β̂1

is consistent.

5) Let:
Yi = Xiβ + Ziγ + ϵi

where Xi and Zi are scalar variables, with E[Xi] = E[Zj] = 0.1 Suppose that V[X] = σ2
X , V[Z] = σ2

Z ,
and C(X,Z) = σXZ .

1Note that based on question 3, you can always make this true by applying the logic of question (3).
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1. Let Wi = [Xi, Zi]. Write the matrix E[W ′
iWi] in terms of σ2

X , σ
2
Z , σ

2
XZ .

E[WiW
′
i ] =

[
σ2
X σXZ

σXZ σ2
Z

]

2. Use the matrix inverse formula2 to calculate E[W ′
iWi]

−1.

E[W ′
iWi]

−1 =
1

σ2
Xσ

2
Z − σ2

XZ

[
σ2
Z −σXZ

−σXZ σ2
X

]

3. Suppose that Xi and Zi are independent, and calculate (a) the variance of the estimator β̂ when
Zi is excluded from the regression; (b) the variance of the estimator β̃ when Zi is included in the
regression. Which estimator is more efficient? One hint: what is the value of σXZ when X and Z
are independent.

V[β̂] =
1

N

σ2
ϵ + γ2σ2

Z

σ2
X

, V[β̃] =
1

N

σ2
ϵ

σ2
X

so β̃ is more efficient.

4. Suppose that Xi and Zi are not independent, but that γ = 0. Calculate (a) the variance of the
estimator β̂ when Zi is excluded from the regression; (b) the variance of the estimator β̃ when Zi

is included in the regression. Which estimator is more efficient?

V[β̂] =
1

N

σ2
ϵ

σ2
X

, V[β̃] =
1

N

σ2
ϵ

σ2
X − σ2

XZ/σ
2
Z

So in this case, V[β̂] is more efficient.

6) Consider the regression Yi = β0 + β1Xi + ϵi when Xi is a single variable and A0-A4 are satisfied.
Suppose that V[Xi] = 2, σ2

ϵ = 1, N = 50, and β1 = 0.5. For the questions below, you will use some of
the following facts about Z, a standard normal random variable.

P [Z > −3.36] = 0.9996, P [Z > −1.36] = 0.913, P [Z > 0.64] = 0.261, P [Z > |1.24] = 0.107

• Calculate V[β̂1] when β̂1 is estimated by OLS.

V[β̂1] =
1

50

1

2
=

1

100

• Suppose you conduct a test of the Null hypothesis that β1 ≤ 0 with size 95% (z0.05 = 1.64). What
is the power of this test?
Since β1 = 0.5, (β̂1 − 0.5)/0.1 is distributed as a standard normal. In this case reject the null if
β̂/0.1 > 1.64 and so:

Power = P [β̂/0.1 > 1.64] = P [(β̂ − 0.5)/0.1 > 1.64− 5] = P [Z > −3.36] = 0.9996

• Suppose you conduct a test of the Null hypothesis that β1 ≤ 0.2. What is the power of this test?
Same procedure gives that power is P [(β̂ − 0.2)/0.1 > 1.64] = P [Z > −1.36] = 0.913

• Suppose you conduct a test of the Null hypothesis that β1 ≤ 0.4. What is the power of this test?
Same procedure gives that power is P [Z > 0.64] = 0.261

2
[

a b
c d

]−1

= 1
ab−cd

[
d −b
−c a

]
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7) Consider the linear model:
Yi = Xiβ + ϵi

where assumptions A0-A4 hold. Suppose that dim(β) = 4.

1. Derive a test of the Null hypothesis that β1 + β2 = 1. Describe exactly how you would conduct
the test with significance α× 100%.

• Run regression and get β̂.

• Compute an estimate of V[β̂] as V̂[β̂] = (X ′X)−1s2ϵ where s2ϵ is the sample variance of the
residuals from the regression.

• Under the null: β̂1+ β̂2−1 is normal with mean zero and variance V[β̂1]+V[β̂2]+2C[β̂1, β̂2].
Read the estimates of these from the matrix V̂[β̂] and call this V .

• Reject the null if
∣∣∣ β̂1+β̂2−1√

V

∣∣∣ > zα/2

2. Derive a test of the joint Null hypotheses that β1 + β2 = 1 and β3 = β4. Describe exactly how
you would conduct the test with significance α× 100%.
We use the fact that under the Null that Rβ − c = 0, then:

(Rβ̂ − c)′(R′V[β̂]R)−1(Rβ̂ − c) ∼ χ2
K

where K is the number of rows in the R matrix. Here we define:

R =

[
1 1 0 0
0 0 1 −1

]
, c =

[
1
0

]
We choose the critical value χ2

2,α which gives P [χ2
2 > χ2

2,α] = α and we reject the null if:

(Rβ̂ − c)′(R′V̂[β̂]R)−1(Rβ̂ − c) > χ2
2,α.

where we have replaced the variance of β̂ with our estimate of the variance.

8) For the below examples, write the correspoding R matrix and vector c in order to write each set of
restrictions as Rβ − c = 0.

1. dim(β) = 4, β1 = 0, β2 − β3 = 0, β4 = 4.

c = [1, 0, 0, 4]′, R =

 1 0 0 0
0 1 −1 0
0 0 0 1


2. dim(β) = 5, β1 = 1, β3 = 4.

c = [1, 4]′, R =

[
1 0 0 0 0
0 0 1 0 0

]

3. dim(β) = 3, β1 = 1.1, β2 + 2β3 = 1.

c = [1.1, 1]′, R =

[
1 0 0
0 1 2

]
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